diff --git a/docs/geneticalgorithm2.html b/docs/geneticalgorithm2.html index 4096ef1..4461463 100644 --- a/docs/geneticalgorithm2.html +++ b/docs/geneticalgorithm2.html @@ -135,76 +135,76 @@
20def get_population_initializer( -21 select_best_of: int = 4, -22 local_optimization_step: LOCAL_OPTIMIZATION_STEP_CASE = 'never', -23 local_optimizer: Optional[ -24 Callable[ -25 [array1D, float], -26 Tuple[array1D, float] -27 ] -28 ] = None -29) -> Tuple[int, Callable[[array2D, array1D], Tuple[array2D, array1D]]]: -30 """ -31 Args: -32 select_best_of: determines population size to select 1/select_best_of best part of start population. -33 For example, for select_best_of = 4 and population_size = N there will be selected N best objects -34 from 5N generated objects (if start_generation=None dictionary). -35 If start_generation is not None dictionary, there will be selected best (start_generation) / N objects -36 local_optimization_step: when to perform local optimization -37 local_optimizer: the local optimization function (object array, its score) -> (modified array, its score) -38 -39 Returns: -40 select_best_of, function which will perform the selection and local optimization -41 """ -42 -43 assert select_best_of > 0 and isinstance(select_best_of, int), (select_best_of, type(select_best_of)) +@@ -222,7 +222,7 @@26def get_population_initializer( +27 select_best_of: int = 4, +28 local_optimization_step: LOCAL_OPTIMIZATION_STEP_CASE = 'never', +29 local_optimizer: Optional[ +30 Callable[ +31 [array1D, float], +32 Tuple[array1D, float] +33 ] +34 ] = None +35) -> Tuple[int, PopulationModifier]: +36 """ +37 Args: +38 select_best_of: determines population size to select 1/select_best_of best part of start population. +39 For example, for select_best_of = 4 and population_size = N there will be selected N best objects +40 from 5N generated objects (if start_generation=None dictionary). +41 If start_generation is not None dictionary, there will be selected best (start_generation) / N objects +42 local_optimization_step: when to perform local optimization +43 local_optimizer: the local optimization function (object array, its score) -> (modified array, its score) 44 -45 assert local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__, ( -46 local_optimization_step, LOCAL_OPTIMIZATION_STEP_CASE.__args__ -47 ) -48 -49 if local_optimizer is None and local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]: -50 raise Exception( -51 f"for local_optimization_step from {LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]} " -52 f"local_optimizer function mustn't be None" -53 ) +45 Returns: +46 select_best_of, population modifier +47 """ +48 +49 assert select_best_of > 0 and isinstance(select_best_of, int), (select_best_of, type(select_best_of)) +50 +51 assert local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__, ( +52 local_optimization_step, LOCAL_OPTIMIZATION_STEP_CASE.__args__ +53 ) 54 -55 def select_best(population: array2D, scores: array1D) -> Tuple[array2D, array1D]: -56 args = np.argsort(scores) -57 args = args[:round(args.size/select_best_of)] -58 return population[args], scores[args] -59 -60 def local_opt(population: array2D, scores: array1D): -61 _pop, _score = zip( -62 *[ -63 local_optimizer(population[i], scores[i]) for i in range(scores.size) -64 ] -65 ) -66 return np.array(_pop), np.array(_score) -67 -68 #def Create_population(func, start_generation, expected_size, #variable_boundaries): -69 # -70 # if not (start_generation['variables'] is None): -71 # pop = start_generation['variables'] -72 # scores = start_generation['scores'] -73 # if scores is None: -74 # scores = np.array([func(pop[i, :]) for i in range(pop.shape[0])]) -75 # return pop, scores -76 -77 def process_population(population: array2D, scores: array1D): -78 if local_optimization_step == 'before_select': -79 pop, s = local_opt(population, scores) -80 return select_best(pop, s) -81 -82 if local_optimization_step == 'after_select': -83 pop, s = select_best(population, scores) -84 return local_opt(pop, s) -85 -86 #if local_optimization_step == 'never': -87 return select_best(population, scores) -88 -89 return select_best_of, process_population +55 if local_optimizer is None and local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]: +56 raise Exception( +57 f"for local_optimization_step from {LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]} " +58 f"local_optimizer function mustn't be None" +59 ) +60 +61 def select_best(population: array2D, scores: array1D) -> Tuple[array2D, array1D]: +62 args = np.argsort(scores) +63 args = args[:round(args.size/select_best_of)] +64 return population[args], scores[args] +65 +66 def local_opt(population: array2D, scores: array1D): +67 _pop, _score = zip( +68 *[ +69 local_optimizer(population[i], scores[i]) for i in range(scores.size) +70 ] +71 ) +72 return np.array(_pop), np.array(_score) +73 +74 #def Create_population(func, start_generation, expected_size, #variable_boundaries): +75 # +76 # if not (start_generation['variables'] is None): +77 # pop = start_generation['variables'] +78 # scores = start_generation['scores'] +79 # if scores is None: +80 # scores = np.array([func(pop[i, :]) for i in range(pop.shape[0])]) +81 # return pop, scores +82 +83 def process_population(population: array2D, scores: array1D): +84 if local_optimization_step == 'before_select': +85 pop, s = local_opt(population, scores) +86 return select_best(pop, s) +87 +88 if local_optimization_step == 'after_select': +89 pop, s = select_best(population, scores) +90 return local_opt(pop, s) +91 +92 #if local_optimization_step == 'never': +93 return select_best(population, scores) +94 +95 return select_best_of, process_population
Returns:
-select_best_of, function which will perform the selection and local optimization
+select_best_of, population modifier
1from typing import Callable, List, Tuple, Optional, Dict, Any, Union, Sequence, Set, Literal
+ 1from typing import Callable, List, Tuple, Optional, Dict, Any, Union, Sequence, Literal, Iterable
2from typing_extensions import TypeAlias
3
4import collections
5import warnings
6import operator
7
- 8
- 9import sys
- 10import time
- 11import random
- 12import math
- 13
- 14import numpy as np
- 15
- 16#region INTERNAL IMPORTS
+ 8import sys
+ 9import time
+ 10import random
+ 11import math
+ 12
+ 13import numpy as np
+ 14
+ 15from OppOpPopInit.initialiser import CreatorFunc
+ 16from OppOpPopInit.oppositor import OppositorFunc
17
- 18from .utils.aliases import array1D, array2D
+ 18#region INTERNAL IMPORTS
19
- 20from .data_types.aliases import FunctionToMinimize, SetFunctionToMinimize
- 21from .data_types.algorithm_params import AlgorithmParams
- 22from .data_types.generation import GenerationConvertible, Generation
- 23from .data_types.result import GAResult
- 24
- 25from .population_initializer import get_population_initializer
- 26from .utils.plotting import plot_pop_scores, plot_several_lines
- 27
- 28from .utils.funcs import can_be_prob, is_numpy, is_current_gen_number, fast_min, random_indexes_pair
+ 20from .utils.aliases import array1D, array2D
+ 21
+ 22from .data_types.aliases import FunctionToMinimize, SetFunctionToMinimize
+ 23from .data_types.algorithm_params import AlgorithmParams
+ 24from .data_types.generation import GenerationConvertible, Generation
+ 25from .data_types.result import GAResult
+ 26
+ 27from .population_initializer import get_population_initializer, PopulationModifier
+ 28from .utils.plotting import plot_pop_scores, plot_several_lines
29
- 30from .callbacks.data import MiddleCallbackData
- 31from .callbacks import MiddleCallbackFunc, SimpleCallbackFunc
- 32
- 33#endregion
+ 30from .utils.funcs import can_be_prob, is_numpy, is_current_gen_number, fast_min, random_indexes_pair
+ 31
+ 32from .callbacks.data import MiddleCallbackData
+ 33from .callbacks import MiddleCallbackFunc, SimpleCallbackFunc
34
- 35#region ALIASES
+ 35#endregion
36
- 37VARIABLE_TYPE: TypeAlias = Literal['int', 'real', 'bool']
- 38"""
- 39the variable type for a given or all dimension, determines the values discretion:
- 40 real: double numbers
- 41 int: integer number only
- 42 bool: in the fact is integer with bounds [0, 1]
- 43"""
- 44
- 45#endregion
+ 37#region ALIASES
+ 38
+ 39VARIABLE_TYPE: TypeAlias = Literal['int', 'real', 'bool']
+ 40"""
+ 41the variable type for a given or all dimension, determines the values discretion:
+ 42 real: double numbers
+ 43 int: integer number only
+ 44 bool: in the fact is integer with bounds [0, 1]
+ 45"""
46
- 47
- 48class GeneticAlgorithm2:
- 49 """
- 50 Genetic algorithm optimization process
- 51 """
- 52
- 53 default_params = AlgorithmParams()
- 54 PROGRESS_BAR_LEN = 20
- 55 """max count of symbols in the progress bar"""
- 56
- 57 @property
- 58 def output_dict(self):
- 59 warnings.warn(
- 60 "'output_dict' is deprecated and will be removed at version 7 \n"
- 61 "use 'result' instead"
- 62 )
- 63 return self.result
- 64
- 65 @property
- 66 def needs_mutation(self) -> bool:
- 67 """whether the mutation is required"""
- 68 return self.prob_mut > 0 or self.prob_mut_discrete > 0
- 69
- 70 #region INIT
+ 47#endregion
+ 48
+ 49
+ 50class GeneticAlgorithm2:
+ 51 """
+ 52 Genetic algorithm optimization process
+ 53 """
+ 54
+ 55 default_params = AlgorithmParams()
+ 56 PROGRESS_BAR_LEN = 20
+ 57 """max count of symbols in the progress bar"""
+ 58
+ 59 @property
+ 60 def output_dict(self):
+ 61 warnings.warn(
+ 62 "'output_dict' is deprecated and will be removed at version 7 \n"
+ 63 "use 'result' instead"
+ 64 )
+ 65 return self.result
+ 66
+ 67 @property
+ 68 def needs_mutation(self) -> bool:
+ 69 """whether the mutation is required"""
+ 70 return self.prob_mut > 0 or self.prob_mut_discrete > 0
71
- 72 def __init__(
- 73 self,
- 74 function: FunctionToMinimize,
- 75
- 76 dimension: int,
- 77 variable_type: Union[VARIABLE_TYPE, Sequence[VARIABLE_TYPE]] = 'bool',
- 78 variable_boundaries: Optional[Union[array2D, Sequence[Tuple[float, float]]]] = None,
- 79
- 80 variable_type_mixed=None,
+ 72 #region INIT
+ 73
+ 74 def __init__(
+ 75 self,
+ 76 function: FunctionToMinimize,
+ 77
+ 78 dimension: int,
+ 79 variable_type: Union[VARIABLE_TYPE, Sequence[VARIABLE_TYPE]] = 'bool',
+ 80 variable_boundaries: Optional[Union[array2D, Sequence[Tuple[float, float]]]] = None,
81
- 82 function_timeout: Optional[float] = None,
- 83 algorithm_parameters: Union[AlgorithmParams, Dict[str, Any]] = default_params
- 84 ):
- 85 """
- 86 initializes the GA object and performs main checks
- 87
- 88 Args:
- 89 function: the given objective function to be minimized
- 90 dimension: the number of decision variables, the population samples dimention
- 91
- 92 variable_type: string means the variable type for all variables,
- 93 for mixed types use sequence of strings of type for each variable
- 94
- 95 variable_boundaries: leave it None if variable_type is 'bool';
- 96 otherwise provide a sequence of tuples of length two as boundaries for each variable;
- 97 the length of the array must be equal dimension.
- 98 For example, ([0,100], [0,200]) determines
- 99 lower boundary 0 and upper boundary 100 for first
- 100 and upper boundary 200 for second variable
- 101 and dimension must be 2.
- 102
- 103 variable_type_mixed -- deprecated
+ 82 variable_type_mixed=None,
+ 83
+ 84 function_timeout: Optional[float] = None,
+ 85 algorithm_parameters: Union[AlgorithmParams, Dict[str, Any]] = default_params
+ 86 ):
+ 87 """
+ 88 initializes the GA object and performs main checks
+ 89
+ 90 Args:
+ 91 function: the given objective function to be minimized
+ 92 dimension: the number of decision variables, the population samples dimention
+ 93
+ 94 variable_type: string means the variable type for all variables,
+ 95 for mixed types use sequence of strings of type for each variable
+ 96
+ 97 variable_boundaries: leave it None if variable_type is 'bool';
+ 98 otherwise provide a sequence of tuples of length two as boundaries for each variable;
+ 99 the length of the array must be equal dimension.
+ 100 For example, ([0,100], [0,200]) determines
+ 101 lower boundary 0 and upper boundary 100 for first
+ 102 and upper boundary 200 for second variable
+ 103 and dimension must be 2.
104
- 105 function_timeout: if the given function does not provide
- 106 output before function_timeout (unit is seconds) the algorithm raises error.
- 107 For example, when there is an infinite loop in the given function.
- 108 `None` means disabling
- 109
- 110 algorithm_parameters: AlgorithmParams object or usual dictionary with algorithm parameter;
- 111 it is not mandatory to provide all possible parameters
- 112
- 113 Notes:
- 114 - This implementation minimizes the given objective function.
- 115 For maximization u can multiply the function by -1 (for instance): the absolute
- 116 value of the output would be the actual objective function
- 117
- 118 for more details and examples of implementation please visit:
- 119 https://github.com/PasaOpasen/geneticalgorithm2
- 120
- 121 """
- 122
- 123 # all default fields
+ 105 variable_type_mixed -- deprecated
+ 106
+ 107 function_timeout: if the given function does not provide
+ 108 output before function_timeout (unit is seconds) the algorithm raises error.
+ 109 For example, when there is an infinite loop in the given function.
+ 110 `None` means disabling
+ 111
+ 112 algorithm_parameters: AlgorithmParams object or usual dictionary with algorithm parameter;
+ 113 it is not mandatory to provide all possible parameters
+ 114
+ 115 Notes:
+ 116 - This implementation minimizes the given objective function.
+ 117 For maximization u can multiply the function by -1 (for instance): the absolute
+ 118 value of the output would be the actual objective function
+ 119
+ 120 for more details and examples of implementation please visit:
+ 121 https://github.com/PasaOpasen/geneticalgorithm2
+ 122
+ 123 """
124
- 125 # self.crossover: Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] = None
- 126 # self.real_mutation: Callable[[float, float, float], float] = None
- 127 # self.discrete_mutation: Callable[[int, int, int], int] = None
- 128 # self.selection: Callable[[np.ndarray, int], np.ndarray] = None
- 129
- 130 self.f: Callable[[array1D], float] = None
- 131 self.funtimeout: float = None
- 132 self.set_function: Callable[[np.ndarray], np.ndarray] = None
- 133
- 134 # self.dim: int = None
- 135 self.var_bounds: List[Tuple[Union[int, float], Union[int, float]]] = None
- 136 # self.indexes_int: np.ndarray = None
- 137 # self.indexes_float: np.ndarray = None
- 138
- 139 self.checked_reports: List[Tuple[str, Callable[[array1D], None]]] = None
+ 125 # all default fields
+ 126
+ 127 # self.crossover: Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] = None
+ 128 # self.real_mutation: Callable[[float, float, float], float] = None
+ 129 # self.discrete_mutation: Callable[[int, int, int], int] = None
+ 130 # self.selection: Callable[[np.ndarray, int], np.ndarray] = None
+ 131
+ 132 self.f: Callable[[array1D], float] = None
+ 133 self.funtimeout: float = None
+ 134 self.set_function: Callable[[np.ndarray], np.ndarray] = None
+ 135
+ 136 # self.dim: int = None
+ 137 self.var_bounds: List[Tuple[Union[int, float], Union[int, float]]] = None
+ 138 # self.indexes_int: np.ndarray = None
+ 139 # self.indexes_float: np.ndarray = None
140
- 141 self.population_size: int = None
- 142 self.progress_stream = None
- 143
- 144 # input algorithm's parameters
+ 141 self.checked_reports: List[Tuple[str, Callable[[array1D], None]]] = None
+ 142
+ 143 self.population_size: int = None
+ 144 self.progress_stream = None
145
- 146 assert isinstance(algorithm_parameters, (dict, AlgorithmParams)), (
- 147 "algorithm_parameters must be dict or AlgorithmParams object"
- 148 )
- 149 if not isinstance(algorithm_parameters, AlgorithmParams):
- 150 algorithm_parameters = AlgorithmParams.from_dict(algorithm_parameters)
- 151 algorithm_parameters.validate()
- 152 self.param = algorithm_parameters
- 153
- 154 self.crossover, self.real_mutation, self.discrete_mutation, self.selection = algorithm_parameters.get_CMS_funcs()
+ 146 # input algorithm's parameters
+ 147
+ 148 assert isinstance(algorithm_parameters, (dict, AlgorithmParams)), (
+ 149 "algorithm_parameters must be dict or AlgorithmParams object"
+ 150 )
+ 151 if not isinstance(algorithm_parameters, AlgorithmParams):
+ 152 algorithm_parameters = AlgorithmParams.from_dict(algorithm_parameters)
+ 153 algorithm_parameters.validate()
+ 154 self.param = algorithm_parameters
155
- 156 # dimension and area bounds
- 157 self.dim = int(dimension)
- 158 assert self.dim > 0, f"dimension count must be int and >0, gotten {dimension}"
- 159
- 160 if variable_type_mixed is not None:
- 161 warnings.warn(
- 162 f"argument variable_type_mixed is deprecated and will be removed at version 7\n "
- 163 f"use variable_type={tuple(variable_type_mixed)} instead"
- 164 )
- 165 variable_type = variable_type_mixed
- 166 self._set_types_indexes(variable_type) # types indexes
- 167 self._set_var_boundaries(variable_type, variable_boundaries) # input variables' boundaries
- 168
- 169 # fix mutation probs
+ 156 self.crossover, self.real_mutation, self.discrete_mutation, self.selection = algorithm_parameters.get_CMS_funcs()
+ 157
+ 158 # dimension and area bounds
+ 159 self.dim = int(dimension)
+ 160 assert self.dim > 0, f"dimension count must be int and >0, gotten {dimension}"
+ 161
+ 162 if variable_type_mixed is not None:
+ 163 warnings.warn(
+ 164 f"argument variable_type_mixed is deprecated and will be removed at version 7\n "
+ 165 f"use variable_type={tuple(variable_type_mixed)} instead"
+ 166 )
+ 167 variable_type = variable_type_mixed
+ 168 self._set_types_indexes(variable_type) # types indexes
+ 169 self._set_var_boundaries(variable_type, variable_boundaries) # input variables' boundaries
170
- 171 assert can_be_prob(self.param.mutation_probability)
- 172 self.prob_mut = self.param.mutation_probability
- 173 assert self.param.mutation_discrete_probability is None or can_be_prob(self.param.mutation_discrete_probability)
- 174 self.prob_mut_discrete = self.param.mutation_discrete_probability or self.prob_mut
- 175
- 176 if self.param.crossover_probability is not None:
- 177 warnings.warn(
- 178 f"crossover_probability is deprecated and will be removed in version 7. "
- 179 f"Reason: it's old and has no sense"
- 180 )
- 181
- 182 #############################################################
- 183 # input function
- 184 assert (callable(function)), "function must be callable!"
- 185 self.f = function
- 186
- 187 if function_timeout is not None and function_timeout > 0:
- 188 try:
- 189 from func_timeout import func_timeout, FunctionTimedOut
- 190 except ModuleNotFoundError:
- 191 raise ModuleNotFoundError(
- 192 "function_timeout > 0 needs additional package func_timeout\n"
- 193 "run `python -m pip install func_timeout`\n"
- 194 "or disable this parameter: function_timeout=None"
- 195 )
- 196
- 197 self.funtimeout = None if function_timeout is None else float(function_timeout)
+ 171 # fix mutation probs
+ 172
+ 173 assert can_be_prob(self.param.mutation_probability)
+ 174 self.prob_mut = self.param.mutation_probability
+ 175 assert self.param.mutation_discrete_probability is None or can_be_prob(self.param.mutation_discrete_probability)
+ 176 self.prob_mut_discrete = self.param.mutation_discrete_probability or self.prob_mut
+ 177
+ 178 if self.param.crossover_probability is not None:
+ 179 warnings.warn(
+ 180 f"crossover_probability is deprecated and will be removed in version 7. "
+ 181 f"Reason: it's old and has no sense"
+ 182 )
+ 183
+ 184 #############################################################
+ 185 # input function
+ 186 assert (callable(function)), "function must be callable!"
+ 187 self.f = function
+ 188
+ 189 if function_timeout is not None and function_timeout > 0:
+ 190 try:
+ 191 from func_timeout import func_timeout, FunctionTimedOut
+ 192 except ModuleNotFoundError:
+ 193 raise ModuleNotFoundError(
+ 194 "function_timeout > 0 needs additional package func_timeout\n"
+ 195 "run `python -m pip install func_timeout`\n"
+ 196 "or disable this parameter: function_timeout=None"
+ 197 )
198
- 199 #############################################################
- 200
- 201 self.population_size = int(self.param.population_size)
- 202 self._set_parents_count(self.param.parents_portion)
- 203 self._set_elit_count(self.population_size, self.param.elit_ratio)
- 204 assert self.parents_count >= self.elit_count, (
- 205 f"\n number of parents ({self.parents_count}) "
- 206 f"must be greater than number of elits ({self.elit_count})"
- 207 )
- 208
- 209 self._set_max_iterations()
+ 199 self.funtimeout = None if function_timeout is None else float(function_timeout)
+ 200
+ 201 #############################################################
+ 202
+ 203 self.population_size = int(self.param.population_size)
+ 204 self._set_parents_count(self.param.parents_portion)
+ 205 self._set_elit_count(self.population_size, self.param.elit_ratio)
+ 206 assert self.parents_count >= self.elit_count, (
+ 207 f"\n number of parents ({self.parents_count}) "
+ 208 f"must be greater than number of elits ({self.elit_count})"
+ 209 )
210
- 211 self._set_report()
+ 211 self._set_max_iterations()
212
- 213 # specify this function to speed up or change default behaviour
- 214 self.fill_children: Optional[Callable[[array2D, int], None]] = None
- 215 """
- 216 custom function which adds children for population POP
- 217 where POP[:parents_count] are parents lines and next lines are for children
- 218 """
- 219
- 220 def _set_types_indexes(self, variable_type: Union[str, Sequence[str]]):
+ 213 self._set_report()
+ 214
+ 215 # specify this function to speed up or change default behaviour
+ 216 self.fill_children: Optional[Callable[[array2D, int], None]] = None
+ 217 """
+ 218 custom function which adds children for population POP
+ 219 where POP[:parents_count] are parents lines and next lines are for children
+ 220 """
221
- 222 indexes = np.arange(self.dim)
- 223 self.indexes_int = np.array([])
- 224 self.indexes_float = np.array([])
- 225
- 226 assert_message = (
- 227 f"\n variable_type must be 'bool', 'int', 'real' or a sequence with 'int' and 'real', got {variable_type}"
- 228 )
- 229
- 230 if isinstance(variable_type, str):
- 231 assert (variable_type in VARIABLE_TYPE.__args__), assert_message
- 232 if variable_type == 'real':
- 233 self.indexes_float = indexes
- 234 else:
- 235 self.indexes_int = indexes
- 236
- 237 else: # sequence case
+ 222 def _set_types_indexes(self, variable_type: Union[str, Sequence[str]]):
+ 223
+ 224 indexes = np.arange(self.dim)
+ 225 self.indexes_int = np.array([])
+ 226 self.indexes_float = np.array([])
+ 227
+ 228 assert_message = (
+ 229 f"\n variable_type must be 'bool', 'int', 'real' or a sequence with 'int' and 'real', got {variable_type}"
+ 230 )
+ 231
+ 232 if isinstance(variable_type, str):
+ 233 assert (variable_type in VARIABLE_TYPE.__args__), assert_message
+ 234 if variable_type == 'real':
+ 235 self.indexes_float = indexes
+ 236 else:
+ 237 self.indexes_int = indexes
238
- 239 assert len(variable_type) == self.dim, (
- 240 f"\n variable_type must have a length equal dimension. "
- 241 f"Should be {self.dim}, got {len(variable_type)}"
- 242 )
- 243 assert 'bool' not in variable_type, (
- 244 "don't use 'bool' if variable_type is a sequence, "
- 245 "for 'boolean' case use 'int' and specify boundary as (0,1)"
- 246 )
- 247 assert all(v in VARIABLE_TYPE.__args__ for v in variable_type), assert_message
- 248
- 249 vartypes = np.array(variable_type)
- 250 self.indexes_int = indexes[vartypes == 'int']
- 251 self.indexes_float = indexes[vartypes == 'real']
- 252
- 253 def _set_var_boundaries(
- 254 self,
- 255 variable_type: Union[str, Sequence[str]],
- 256 variable_boundaries
- 257 ):
- 258 if isinstance(variable_type, str) and variable_type == 'bool':
- 259 self.var_bounds = [(0, 1)] * self.dim
- 260 else:
- 261
- 262 if is_numpy(variable_boundaries):
- 263 assert variable_boundaries.shape == (self.dim, 2), (
- 264 f"\n if variable_boundaries is numpy array, it must be with shape (dim, 2)"
- 265 )
- 266 else:
- 267 assert len(variable_boundaries) == self.dim and all((len(t) == 2 for t in variable_boundaries)), (
- 268 "\n if variable_boundaries is sequence, "
- 269 "it must be with len dim and boundary for each variable must be a tuple of length two"
- 270 )
- 271
- 272 for i in variable_boundaries:
- 273 assert i[0] <= i[1], "\n lower_boundaries must be smaller than upper_boundaries [lower,upper]"
- 274
- 275 self.var_bounds = [(i[0], i[1]) for i in variable_boundaries]
+ 239 else: # sequence case
+ 240
+ 241 assert len(variable_type) == self.dim, (
+ 242 f"\n variable_type must have a length equal dimension. "
+ 243 f"Should be {self.dim}, got {len(variable_type)}"
+ 244 )
+ 245 assert 'bool' not in variable_type, (
+ 246 "don't use 'bool' if variable_type is a sequence, "
+ 247 "for 'boolean' case use 'int' and specify boundary as (0,1)"
+ 248 )
+ 249 assert all(v in VARIABLE_TYPE.__args__ for v in variable_type), assert_message
+ 250
+ 251 vartypes = np.array(variable_type)
+ 252 self.indexes_int = indexes[vartypes == 'int']
+ 253 self.indexes_float = indexes[vartypes == 'real']
+ 254
+ 255 def _set_var_boundaries(
+ 256 self,
+ 257 variable_type: Union[str, Sequence[str]],
+ 258 variable_boundaries
+ 259 ):
+ 260 if isinstance(variable_type, str) and variable_type == 'bool':
+ 261 self.var_bounds = [(0, 1)] * self.dim
+ 262 else:
+ 263
+ 264 if is_numpy(variable_boundaries):
+ 265 assert variable_boundaries.shape == (self.dim, 2), (
+ 266 f"\n if variable_boundaries is numpy array, it must be with shape (dim, 2)"
+ 267 )
+ 268 else:
+ 269 assert len(variable_boundaries) == self.dim and all((len(t) == 2 for t in variable_boundaries)), (
+ 270 "\n if variable_boundaries is sequence, "
+ 271 "it must be with len dim and boundary for each variable must be a tuple of length two"
+ 272 )
+ 273
+ 274 for i in variable_boundaries:
+ 275 assert i[0] <= i[1], "\n lower_boundaries must be smaller than upper_boundaries [lower,upper]"
276
- 277 def _set_parents_count(self, parents_portion: float):
+ 277 self.var_bounds = [(i[0], i[1]) for i in variable_boundaries]
278
- 279 self.parents_count = int(parents_portion * self.population_size)
- 280 assert self.population_size >= self.parents_count > 1, (
- 281 f'parents count {self.parents_count} cannot be less than population size {self.population_size}'
- 282 )
- 283 trl = self.population_size - self.parents_count
- 284 if trl % 2 != 0:
- 285 self.parents_count += 1
- 286
- 287 def _set_elit_count(self, pop_size: int, elit_ratio: Union[float, int]):
+ 279 def _set_parents_count(self, parents_portion: float):
+ 280
+ 281 self.parents_count = int(parents_portion * self.population_size)
+ 282 assert self.population_size >= self.parents_count > 1, (
+ 283 f'parents count {self.parents_count} cannot be less than population size {self.population_size}'
+ 284 )
+ 285 trl = self.population_size - self.parents_count
+ 286 if trl % 2 != 0:
+ 287 self.parents_count += 1
288
- 289 assert elit_ratio >= 0
- 290 self.elit_count = elit_ratio if isinstance(elit_ratio, str) else math.ceil(pop_size*elit_ratio)
- 291
- 292 def _set_max_iterations(self):
+ 289 def _set_elit_count(self, pop_size: int, elit_ratio: Union[float, int]):
+ 290
+ 291 assert elit_ratio >= 0
+ 292 self.elit_count = elit_ratio if isinstance(elit_ratio, str) else math.ceil(pop_size*elit_ratio)
293
- 294 if self.param.max_num_iteration is None:
- 295 iterate = 0
- 296 for i in range(0, self.dim):
- 297 bound_min, bound_max = self.var_bounds[i]
- 298 var_space = bound_max - bound_min
- 299 if i in self.indexes_int:
- 300 iterate += var_space * self.dim * (100 / self.population_size)
- 301 else:
- 302 iterate += var_space * 50 * (100 / self.population_size)
- 303 iterate = int(iterate)
- 304 if (iterate * self.population_size) > 10000000:
- 305 iterate = 10000000 / self.population_size
- 306
- 307 self.max_iterations = fast_min(iterate, 8000)
- 308 else:
- 309 assert self.param.max_num_iteration > 0
- 310 self.max_iterations = math.ceil(self.param.max_num_iteration)
- 311
- 312 max_it = self.param.max_iteration_without_improv
- 313 if max_it is None:
- 314 self.max_stagnations = self.max_iterations + 1
- 315 else:
- 316 self.max_stagnations = math.ceil(max_it)
- 317
- 318 #endregion
+ 294 def _set_max_iterations(self):
+ 295
+ 296 if self.param.max_num_iteration is None:
+ 297 iterate = 0
+ 298 for i in range(0, self.dim):
+ 299 bound_min, bound_max = self.var_bounds[i]
+ 300 var_space = bound_max - bound_min
+ 301 if i in self.indexes_int:
+ 302 iterate += var_space * self.dim * (100 / self.population_size)
+ 303 else:
+ 304 iterate += var_space * 50 * (100 / self.population_size)
+ 305 iterate = int(iterate)
+ 306 if (iterate * self.population_size) > 10000000:
+ 307 iterate = 10000000 / self.population_size
+ 308
+ 309 self.max_iterations = fast_min(iterate, 8000)
+ 310 else:
+ 311 assert self.param.max_num_iteration > 0
+ 312 self.max_iterations = math.ceil(self.param.max_num_iteration)
+ 313
+ 314 max_it = self.param.max_iteration_without_improv
+ 315 if max_it is None:
+ 316 self.max_stagnations = self.max_iterations + 1
+ 317 else:
+ 318 self.max_stagnations = math.ceil(max_it)
319
- 320 #region REPORT
+ 320 #endregion
321
- 322 def _set_report(self):
- 323 """
- 324 creates default report checker
- 325 """
- 326 self.checked_reports = [
- 327 # item 0 cuz scores will be sorted and min item is items[0]
- 328 ('report', operator.itemgetter(0))
- 329 ]
- 330
- 331 def _clear_report(self):
- 332 """
- 333 removes all report objects
- 334 """
- 335 fields = [f for f in vars(self).keys() if f.startswith('report')]
- 336 for attr in fields:
- 337 delattr(self, attr)
- 338
- 339 def _init_report(self):
- 340 """
- 341 makes empty report fields
- 342 """
- 343 for name, _ in self.checked_reports:
- 344 setattr(self, name, [])
- 345
- 346 def _update_report(self, scores: array1D):
- 347 """
- 348 append report value to the end of field
- 349 """
- 350 for name, func in self.checked_reports:
- 351 getattr(self, name).append(
- 352 func(scores)
- 353 )
- 354
- 355 #endregion
+ 322 #region REPORT
+ 323
+ 324 def _set_report(self):
+ 325 """
+ 326 creates default report checker
+ 327 """
+ 328 self.checked_reports = [
+ 329 # item 0 cuz scores will be sorted and min item is items[0]
+ 330 ('report', operator.itemgetter(0))
+ 331 ]
+ 332
+ 333 def _clear_report(self):
+ 334 """
+ 335 removes all report objects
+ 336 """
+ 337 fields = [f for f in vars(self).keys() if f.startswith('report')]
+ 338 for attr in fields:
+ 339 delattr(self, attr)
+ 340
+ 341 def _init_report(self):
+ 342 """
+ 343 makes empty report fields
+ 344 """
+ 345 for name, _ in self.checked_reports:
+ 346 setattr(self, name, [])
+ 347
+ 348 def _update_report(self, scores: array1D):
+ 349 """
+ 350 append report value to the end of field
+ 351 """
+ 352 for name, func in self.checked_reports:
+ 353 getattr(self, name).append(
+ 354 func(scores)
+ 355 )
356
- 357 #region RUN METHODS
+ 357 #endregion
358
- 359 def _progress(self, count: int, total: int, status: str = ''):
+ 359 #region RUN METHODS
360
- 361 part = count / total
+ 361 def _progress(self, count: int, total: int, status: str = ''):
362
- 363 filled_len = round(GeneticAlgorithm2.PROGRESS_BAR_LEN * part)
- 364 percents = round(100.0 * part, 1)
- 365 bar = '|' * filled_len + '_' * (GeneticAlgorithm2.PROGRESS_BAR_LEN - filled_len)
- 366
- 367 self.progress_stream.write('\r%s %s%s %s' % (bar, percents, '%', status))
- 368 self.progress_stream.flush()
- 369
- 370 def __str__(self):
- 371 return f"Genetic algorithm object with parameters {self.param}"
- 372
- 373 def __repr__(self):
- 374 return self.__str__()
- 375
- 376 def _simulate(self, sample: array1D):
+ 363 part = count / total
+ 364
+ 365 filled_len = round(GeneticAlgorithm2.PROGRESS_BAR_LEN * part)
+ 366 percents = round(100.0 * part, 1)
+ 367 bar = '|' * filled_len + '_' * (GeneticAlgorithm2.PROGRESS_BAR_LEN - filled_len)
+ 368
+ 369 self.progress_stream.write('\r%s %s%s %s' % (bar, percents, '%', status))
+ 370 self.progress_stream.flush()
+ 371
+ 372 def __str__(self):
+ 373 return f"Genetic algorithm object with parameters {self.param}"
+ 374
+ 375 def __repr__(self):
+ 376 return self.__str__()
377
- 378 from func_timeout import func_timeout, FunctionTimedOut
+ 378 def _simulate(self, sample: array1D):
379
- 380 obj = None
- 381 eval_time = time.time()
- 382 try:
- 383 obj = func_timeout(
- 384 self.funtimeout,
- 385 lambda: self.f(sample)
- 386 )
- 387 except FunctionTimedOut:
- 388 print("given function is not applicable")
- 389 eval_time = time.time() - eval_time
- 390
- 391 assert obj is not None, (
- 392 f"the given function was running like {eval_time} seconds and does not provide any output"
- 393 )
- 394
- 395 tp = type(obj)
- 396 assert (
- 397 tp in (int, float) or np.issubdtype(tp, np.floating) or np.issubdtype(tp, np.integer)
- 398 ), f"Minimized function should return a number, but got '{obj}' object with type {tp}"
- 399
- 400 return obj, eval_time
+ 380 from func_timeout import func_timeout, FunctionTimedOut
+ 381
+ 382 obj = None
+ 383 eval_time = time.time()
+ 384 try:
+ 385 obj = func_timeout(
+ 386 self.funtimeout,
+ 387 lambda: self.f(sample)
+ 388 )
+ 389 except FunctionTimedOut:
+ 390 print("given function is not applicable")
+ 391 eval_time = time.time() - eval_time
+ 392
+ 393 assert obj is not None, (
+ 394 f"the given function was running like {eval_time} seconds and does not provide any output"
+ 395 )
+ 396
+ 397 tp = type(obj)
+ 398 assert (
+ 399 tp in (int, float) or np.issubdtype(tp, np.floating) or np.issubdtype(tp, np.integer)
+ 400 ), f"Minimized function should return a number, but got '{obj}' object with type {tp}"
401
- 402 def _set_mutation_indexes(self, mutation_indexes: Optional[Sequence[int]]):
+ 402 return obj, eval_time
403
- 404 if mutation_indexes is None:
- 405 self.indexes_float_mut = self.indexes_float
- 406 self.indexes_int_mut = self.indexes_int
- 407 else:
- 408 tmp_indexes = set(mutation_indexes)
- 409 self.indexes_int_mut = np.array(list(tmp_indexes.intersection(self.indexes_int)))
- 410 self.indexes_float_mut = np.array(list(tmp_indexes.intersection(self.indexes_float)))
- 411
- 412 if self.indexes_float_mut.size == 0 and self.indexes_int_mut.size == 0:
- 413 warnings.warn(f"No mutation dimensions!!! Check ur mutation indexes!!")
- 414
- 415 #@profile
- 416 def run(
- 417 self,
- 418 no_plot: bool = False,
- 419 disable_printing: bool = False,
- 420 progress_bar_stream: Optional[str] = 'stdout',
- 421
- 422 # deprecated
- 423 disable_progress_bar: bool = False,
- 424
- 425 set_function: SetFunctionToMinimize = None,
- 426 apply_function_to_parents: bool = False,
- 427 start_generation: GenerationConvertible = Generation(),
- 428 studEA: bool = False,
- 429 mutation_indexes: Optional[Union[Sequence[int], Set[int]]] = None,
- 430
- 431 init_creator: Optional[Callable[[], array1D]] = None,
- 432 init_oppositors: Optional[Sequence[Callable[[array1D], array1D]]] = None,
- 433
- 434 duplicates_oppositor: Optional[Callable[[array1D], array1D]] = None,
- 435 remove_duplicates_generation_step: Optional[int] = None,
- 436
- 437 revolution_oppositor: Optional[Callable[[array1D], array1D]] = None,
- 438 revolution_after_stagnation_step: Optional[int] = None,
- 439 revolution_part: float = 0.3,
- 440
- 441 population_initializer: Tuple[
- 442 int, Callable[[array2D, array1D], Tuple[array2D, array1D]]
- 443 ] = get_population_initializer(select_best_of=1, local_optimization_step='never', local_optimizer=None),
- 444
- 445 stop_when_reached: Optional[float] = None,
- 446 callbacks: Optional[Sequence[SimpleCallbackFunc]] = None,
- 447 middle_callbacks: Optional[Sequence[MiddleCallbackFunc]] = None, #+
- 448 time_limit_secs: Optional[float] = None,
- 449 save_last_generation_as: Optional[str] = None,
- 450 seed: Optional[int] = None
- 451 ):
- 452 """
- 453 runs optimization process
- 454
- 455 Args:
- 456 no_plot: do not plot results using matplotlib by default
- 457
- 458 disable_printing: do not print log info of optimization process
+ 404 def _set_mutation_indexes(self, mutation_indexes: Optional[Iterable[int]]):
+ 405
+ 406 if mutation_indexes is None:
+ 407 self.indexes_float_mut = self.indexes_float
+ 408 self.indexes_int_mut = self.indexes_int
+ 409 else:
+ 410 tmp_indexes = set(mutation_indexes)
+ 411 self.indexes_int_mut = np.array(list(tmp_indexes.intersection(self.indexes_int)))
+ 412 self.indexes_float_mut = np.array(list(tmp_indexes.intersection(self.indexes_float)))
+ 413
+ 414 if self.indexes_float_mut.size == 0 and self.indexes_int_mut.size == 0:
+ 415 warnings.warn(f"No mutation dimensions!!! Check ur mutation indexes!!")
+ 416
+ 417 #@profile
+ 418 def run(
+ 419 self,
+ 420 no_plot: bool = False,
+ 421 disable_printing: bool = False,
+ 422 progress_bar_stream: Optional[str] = 'stdout',
+ 423
+ 424 # deprecated
+ 425 disable_progress_bar: bool = False,
+ 426
+ 427 set_function: SetFunctionToMinimize = None,
+ 428 apply_function_to_parents: bool = False,
+ 429 start_generation: GenerationConvertible = Generation(),
+ 430 studEA: bool = False,
+ 431 mutation_indexes: Optional[Iterable[int]] = None,
+ 432
+ 433 init_creator: Optional[CreatorFunc] = None,
+ 434 init_oppositors: Optional[Sequence[OppositorFunc]] = None,
+ 435
+ 436 duplicates_oppositor: Optional[OppositorFunc] = None,
+ 437 remove_duplicates_generation_step: Optional[int] = None,
+ 438
+ 439 revolution_oppositor: Optional[OppositorFunc] = None,
+ 440 revolution_after_stagnation_step: Optional[int] = None,
+ 441 revolution_part: float = 0.3,
+ 442
+ 443 population_initializer: Tuple[
+ 444 int, PopulationModifier
+ 445 ] = get_population_initializer(select_best_of=1, local_optimization_step='never', local_optimizer=None),
+ 446
+ 447 stop_when_reached: Optional[float] = None,
+ 448 callbacks: Optional[Sequence[SimpleCallbackFunc]] = None,
+ 449 middle_callbacks: Optional[Sequence[MiddleCallbackFunc]] = None, #+
+ 450 time_limit_secs: Optional[float] = None,
+ 451 save_last_generation_as: Optional[str] = None,
+ 452 seed: Optional[int] = None
+ 453 ):
+ 454 """
+ 455 runs optimization process
+ 456
+ 457 Args:
+ 458 no_plot: do not plot results using matplotlib by default
459
- 460 progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
+ 460 disable_printing: do not print log info of optimization process
461
- 462 disable_progress_bar:
+ 462 progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
463
- 464 set_function : 2D-array -> 1D-array function,
- 465 which applyes to matrix of population (size (samples, dimention))
- 466 to estimate their values
+ 464 disable_progress_bar: deprecated
+ 465
+ 466 set_function: set function to be used instead of usual function
467
- 468 apply_function_to_parents: apply function to parents from previous generation (if it's needed)
+ 468 apply_function_to_parents: whether to apply function to parents from previous generation (if it's needed)
469
- 470 start_generation: Generation object or a dictionary with structure
- 471 {'variables':2D-array of samples, 'scores': function values on samples}
- 472 or path to .npz file (str) with saved generation; if 'scores' value is None the scores will be compute
+ 470 start_generation: initial generation object of any `GenerationConvertible` type
+ 471
+ 472 studEA: using stud EA strategy (crossover with best object always)
473
- 474 studEA: using stud EA strategy (crossover with best object always)
+ 474 mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
475
- 476 mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
- 477
- 478 init_creator: the function creates population samples.
- 479 By default -- random uniform for real variables and random uniform for int
- 480 init_oppositors: the list of oppositors creates oppositions for base population. No by default
- 481 duplicates_oppositor: oppositor for applying after duplicates removing.
- 482 By default -- using just random initializer from creator
- 483 remove_duplicates_generation_step: step for removing duplicates (have a sense with discrete tasks).
- 484 No by default
+ 476 init_creator: the function creates population samples.
+ 477 By default -- random uniform for real variables and random uniform for int
+ 478 init_oppositors: the list of oppositors creates oppositions for base population. No by default
+ 479
+ 480 duplicates_oppositor: oppositor for applying after duplicates removing.
+ 481 By default -- using just random initializer from creator
+ 482 remove_duplicates_generation_step: step for removing duplicates (have a sense with discrete tasks).
+ 483 No by default
+ 484
485 revolution_oppositor: oppositor for revolution time. No by default
486 revolution_after_stagnation_step: create revolution after this generations of stagnation. No by default
487 revolution_part: float, the part of generation to being oppose. By default is 0.3
@@ -634,7 +634,7 @@
494 callbacks: sequence of callback functions with structure:
495 (generation_number, report_list, last_population, last_scores) -> do some action
496
- 497 middle_callbacks: sequence of functions made MiddleCallbacks class
+ 497 middle_callbacks: sequence of functions made `MiddleCallback` class
498
499 time_limit_secs: limit time of working (in seconds)
500
@@ -1369,443 +1369,441 @@
- 50class GeneticAlgorithm2:
- 51 """
- 52 Genetic algorithm optimization process
- 53 """
- 54
- 55 default_params = AlgorithmParams()
- 56 PROGRESS_BAR_LEN = 20
- 57 """max count of symbols in the progress bar"""
- 58
- 59 @property
- 60 def output_dict(self):
- 61 warnings.warn(
- 62 "'output_dict' is deprecated and will be removed at version 7 \n"
- 63 "use 'result' instead"
- 64 )
- 65 return self.result
- 66
- 67 @property
- 68 def needs_mutation(self) -> bool:
- 69 """whether the mutation is required"""
- 70 return self.prob_mut > 0 or self.prob_mut_discrete > 0
- 71
- 72 #region INIT
+ 52class GeneticAlgorithm2:
+ 53 """
+ 54 Genetic algorithm optimization process
+ 55 """
+ 56
+ 57 default_params = AlgorithmParams()
+ 58 PROGRESS_BAR_LEN = 20
+ 59 """max count of symbols in the progress bar"""
+ 60
+ 61 @property
+ 62 def output_dict(self):
+ 63 warnings.warn(
+ 64 "'output_dict' is deprecated and will be removed at version 7 \n"
+ 65 "use 'result' instead"
+ 66 )
+ 67 return self.result
+ 68
+ 69 @property
+ 70 def needs_mutation(self) -> bool:
+ 71 """whether the mutation is required"""
+ 72 return self.prob_mut > 0 or self.prob_mut_discrete > 0
73
- 74 def __init__(
- 75 self,
- 76 function: FunctionToMinimize,
- 77
- 78 dimension: int,
- 79 variable_type: Union[VARIABLE_TYPE, Sequence[VARIABLE_TYPE]] = 'bool',
- 80 variable_boundaries: Optional[Union[array2D, Sequence[Tuple[float, float]]]] = None,
- 81
- 82 variable_type_mixed=None,
+ 74 #region INIT
+ 75
+ 76 def __init__(
+ 77 self,
+ 78 function: FunctionToMinimize,
+ 79
+ 80 dimension: int,
+ 81 variable_type: Union[VARIABLE_TYPE, Sequence[VARIABLE_TYPE]] = 'bool',
+ 82 variable_boundaries: Optional[Union[array2D, Sequence[Tuple[float, float]]]] = None,
83
- 84 function_timeout: Optional[float] = None,
- 85 algorithm_parameters: Union[AlgorithmParams, Dict[str, Any]] = default_params
- 86 ):
- 87 """
- 88 initializes the GA object and performs main checks
- 89
- 90 Args:
- 91 function: the given objective function to be minimized
- 92 dimension: the number of decision variables, the population samples dimention
- 93
- 94 variable_type: string means the variable type for all variables,
- 95 for mixed types use sequence of strings of type for each variable
- 96
- 97 variable_boundaries: leave it None if variable_type is 'bool';
- 98 otherwise provide a sequence of tuples of length two as boundaries for each variable;
- 99 the length of the array must be equal dimension.
- 100 For example, ([0,100], [0,200]) determines
- 101 lower boundary 0 and upper boundary 100 for first
- 102 and upper boundary 200 for second variable
- 103 and dimension must be 2.
- 104
- 105 variable_type_mixed -- deprecated
+ 84 variable_type_mixed=None,
+ 85
+ 86 function_timeout: Optional[float] = None,
+ 87 algorithm_parameters: Union[AlgorithmParams, Dict[str, Any]] = default_params
+ 88 ):
+ 89 """
+ 90 initializes the GA object and performs main checks
+ 91
+ 92 Args:
+ 93 function: the given objective function to be minimized
+ 94 dimension: the number of decision variables, the population samples dimention
+ 95
+ 96 variable_type: string means the variable type for all variables,
+ 97 for mixed types use sequence of strings of type for each variable
+ 98
+ 99 variable_boundaries: leave it None if variable_type is 'bool';
+ 100 otherwise provide a sequence of tuples of length two as boundaries for each variable;
+ 101 the length of the array must be equal dimension.
+ 102 For example, ([0,100], [0,200]) determines
+ 103 lower boundary 0 and upper boundary 100 for first
+ 104 and upper boundary 200 for second variable
+ 105 and dimension must be 2.
106
- 107 function_timeout: if the given function does not provide
- 108 output before function_timeout (unit is seconds) the algorithm raises error.
- 109 For example, when there is an infinite loop in the given function.
- 110 `None` means disabling
- 111
- 112 algorithm_parameters: AlgorithmParams object or usual dictionary with algorithm parameter;
- 113 it is not mandatory to provide all possible parameters
- 114
- 115 Notes:
- 116 - This implementation minimizes the given objective function.
- 117 For maximization u can multiply the function by -1 (for instance): the absolute
- 118 value of the output would be the actual objective function
- 119
- 120 for more details and examples of implementation please visit:
- 121 https://github.com/PasaOpasen/geneticalgorithm2
- 122
- 123 """
- 124
- 125 # all default fields
+ 107 variable_type_mixed -- deprecated
+ 108
+ 109 function_timeout: if the given function does not provide
+ 110 output before function_timeout (unit is seconds) the algorithm raises error.
+ 111 For example, when there is an infinite loop in the given function.
+ 112 `None` means disabling
+ 113
+ 114 algorithm_parameters: AlgorithmParams object or usual dictionary with algorithm parameter;
+ 115 it is not mandatory to provide all possible parameters
+ 116
+ 117 Notes:
+ 118 - This implementation minimizes the given objective function.
+ 119 For maximization u can multiply the function by -1 (for instance): the absolute
+ 120 value of the output would be the actual objective function
+ 121
+ 122 for more details and examples of implementation please visit:
+ 123 https://github.com/PasaOpasen/geneticalgorithm2
+ 124
+ 125 """
126
- 127 # self.crossover: Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] = None
- 128 # self.real_mutation: Callable[[float, float, float], float] = None
- 129 # self.discrete_mutation: Callable[[int, int, int], int] = None
- 130 # self.selection: Callable[[np.ndarray, int], np.ndarray] = None
- 131
- 132 self.f: Callable[[array1D], float] = None
- 133 self.funtimeout: float = None
- 134 self.set_function: Callable[[np.ndarray], np.ndarray] = None
- 135
- 136 # self.dim: int = None
- 137 self.var_bounds: List[Tuple[Union[int, float], Union[int, float]]] = None
- 138 # self.indexes_int: np.ndarray = None
- 139 # self.indexes_float: np.ndarray = None
- 140
- 141 self.checked_reports: List[Tuple[str, Callable[[array1D], None]]] = None
+ 127 # all default fields
+ 128
+ 129 # self.crossover: Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] = None
+ 130 # self.real_mutation: Callable[[float, float, float], float] = None
+ 131 # self.discrete_mutation: Callable[[int, int, int], int] = None
+ 132 # self.selection: Callable[[np.ndarray, int], np.ndarray] = None
+ 133
+ 134 self.f: Callable[[array1D], float] = None
+ 135 self.funtimeout: float = None
+ 136 self.set_function: Callable[[np.ndarray], np.ndarray] = None
+ 137
+ 138 # self.dim: int = None
+ 139 self.var_bounds: List[Tuple[Union[int, float], Union[int, float]]] = None
+ 140 # self.indexes_int: np.ndarray = None
+ 141 # self.indexes_float: np.ndarray = None
142
- 143 self.population_size: int = None
- 144 self.progress_stream = None
- 145
- 146 # input algorithm's parameters
+ 143 self.checked_reports: List[Tuple[str, Callable[[array1D], None]]] = None
+ 144
+ 145 self.population_size: int = None
+ 146 self.progress_stream = None
147
- 148 assert isinstance(algorithm_parameters, (dict, AlgorithmParams)), (
- 149 "algorithm_parameters must be dict or AlgorithmParams object"
- 150 )
- 151 if not isinstance(algorithm_parameters, AlgorithmParams):
- 152 algorithm_parameters = AlgorithmParams.from_dict(algorithm_parameters)
- 153 algorithm_parameters.validate()
- 154 self.param = algorithm_parameters
- 155
- 156 self.crossover, self.real_mutation, self.discrete_mutation, self.selection = algorithm_parameters.get_CMS_funcs()
+ 148 # input algorithm's parameters
+ 149
+ 150 assert isinstance(algorithm_parameters, (dict, AlgorithmParams)), (
+ 151 "algorithm_parameters must be dict or AlgorithmParams object"
+ 152 )
+ 153 if not isinstance(algorithm_parameters, AlgorithmParams):
+ 154 algorithm_parameters = AlgorithmParams.from_dict(algorithm_parameters)
+ 155 algorithm_parameters.validate()
+ 156 self.param = algorithm_parameters
157
- 158 # dimension and area bounds
- 159 self.dim = int(dimension)
- 160 assert self.dim > 0, f"dimension count must be int and >0, gotten {dimension}"
- 161
- 162 if variable_type_mixed is not None:
- 163 warnings.warn(
- 164 f"argument variable_type_mixed is deprecated and will be removed at version 7\n "
- 165 f"use variable_type={tuple(variable_type_mixed)} instead"
- 166 )
- 167 variable_type = variable_type_mixed
- 168 self._set_types_indexes(variable_type) # types indexes
- 169 self._set_var_boundaries(variable_type, variable_boundaries) # input variables' boundaries
- 170
- 171 # fix mutation probs
+ 158 self.crossover, self.real_mutation, self.discrete_mutation, self.selection = algorithm_parameters.get_CMS_funcs()
+ 159
+ 160 # dimension and area bounds
+ 161 self.dim = int(dimension)
+ 162 assert self.dim > 0, f"dimension count must be int and >0, gotten {dimension}"
+ 163
+ 164 if variable_type_mixed is not None:
+ 165 warnings.warn(
+ 166 f"argument variable_type_mixed is deprecated and will be removed at version 7\n "
+ 167 f"use variable_type={tuple(variable_type_mixed)} instead"
+ 168 )
+ 169 variable_type = variable_type_mixed
+ 170 self._set_types_indexes(variable_type) # types indexes
+ 171 self._set_var_boundaries(variable_type, variable_boundaries) # input variables' boundaries
172
- 173 assert can_be_prob(self.param.mutation_probability)
- 174 self.prob_mut = self.param.mutation_probability
- 175 assert self.param.mutation_discrete_probability is None or can_be_prob(self.param.mutation_discrete_probability)
- 176 self.prob_mut_discrete = self.param.mutation_discrete_probability or self.prob_mut
- 177
- 178 if self.param.crossover_probability is not None:
- 179 warnings.warn(
- 180 f"crossover_probability is deprecated and will be removed in version 7. "
- 181 f"Reason: it's old and has no sense"
- 182 )
- 183
- 184 #############################################################
- 185 # input function
- 186 assert (callable(function)), "function must be callable!"
- 187 self.f = function
- 188
- 189 if function_timeout is not None and function_timeout > 0:
- 190 try:
- 191 from func_timeout import func_timeout, FunctionTimedOut
- 192 except ModuleNotFoundError:
- 193 raise ModuleNotFoundError(
- 194 "function_timeout > 0 needs additional package func_timeout\n"
- 195 "run `python -m pip install func_timeout`\n"
- 196 "or disable this parameter: function_timeout=None"
- 197 )
- 198
- 199 self.funtimeout = None if function_timeout is None else float(function_timeout)
+ 173 # fix mutation probs
+ 174
+ 175 assert can_be_prob(self.param.mutation_probability)
+ 176 self.prob_mut = self.param.mutation_probability
+ 177 assert self.param.mutation_discrete_probability is None or can_be_prob(self.param.mutation_discrete_probability)
+ 178 self.prob_mut_discrete = self.param.mutation_discrete_probability or self.prob_mut
+ 179
+ 180 if self.param.crossover_probability is not None:
+ 181 warnings.warn(
+ 182 f"crossover_probability is deprecated and will be removed in version 7. "
+ 183 f"Reason: it's old and has no sense"
+ 184 )
+ 185
+ 186 #############################################################
+ 187 # input function
+ 188 assert (callable(function)), "function must be callable!"
+ 189 self.f = function
+ 190
+ 191 if function_timeout is not None and function_timeout > 0:
+ 192 try:
+ 193 from func_timeout import func_timeout, FunctionTimedOut
+ 194 except ModuleNotFoundError:
+ 195 raise ModuleNotFoundError(
+ 196 "function_timeout > 0 needs additional package func_timeout\n"
+ 197 "run `python -m pip install func_timeout`\n"
+ 198 "or disable this parameter: function_timeout=None"
+ 199 )
200
- 201 #############################################################
- 202
- 203 self.population_size = int(self.param.population_size)
- 204 self._set_parents_count(self.param.parents_portion)
- 205 self._set_elit_count(self.population_size, self.param.elit_ratio)
- 206 assert self.parents_count >= self.elit_count, (
- 207 f"\n number of parents ({self.parents_count}) "
- 208 f"must be greater than number of elits ({self.elit_count})"
- 209 )
- 210
- 211 self._set_max_iterations()
+ 201 self.funtimeout = None if function_timeout is None else float(function_timeout)
+ 202
+ 203 #############################################################
+ 204
+ 205 self.population_size = int(self.param.population_size)
+ 206 self._set_parents_count(self.param.parents_portion)
+ 207 self._set_elit_count(self.population_size, self.param.elit_ratio)
+ 208 assert self.parents_count >= self.elit_count, (
+ 209 f"\n number of parents ({self.parents_count}) "
+ 210 f"must be greater than number of elits ({self.elit_count})"
+ 211 )
212
- 213 self._set_report()
+ 213 self._set_max_iterations()
214
- 215 # specify this function to speed up or change default behaviour
- 216 self.fill_children: Optional[Callable[[array2D, int], None]] = None
- 217 """
- 218 custom function which adds children for population POP
- 219 where POP[:parents_count] are parents lines and next lines are for children
- 220 """
- 221
- 222 def _set_types_indexes(self, variable_type: Union[str, Sequence[str]]):
+ 215 self._set_report()
+ 216
+ 217 # specify this function to speed up or change default behaviour
+ 218 self.fill_children: Optional[Callable[[array2D, int], None]] = None
+ 219 """
+ 220 custom function which adds children for population POP
+ 221 where POP[:parents_count] are parents lines and next lines are for children
+ 222 """
223
- 224 indexes = np.arange(self.dim)
- 225 self.indexes_int = np.array([])
- 226 self.indexes_float = np.array([])
- 227
- 228 assert_message = (
- 229 f"\n variable_type must be 'bool', 'int', 'real' or a sequence with 'int' and 'real', got {variable_type}"
- 230 )
- 231
- 232 if isinstance(variable_type, str):
- 233 assert (variable_type in VARIABLE_TYPE.__args__), assert_message
- 234 if variable_type == 'real':
- 235 self.indexes_float = indexes
- 236 else:
- 237 self.indexes_int = indexes
- 238
- 239 else: # sequence case
+ 224 def _set_types_indexes(self, variable_type: Union[str, Sequence[str]]):
+ 225
+ 226 indexes = np.arange(self.dim)
+ 227 self.indexes_int = np.array([])
+ 228 self.indexes_float = np.array([])
+ 229
+ 230 assert_message = (
+ 231 f"\n variable_type must be 'bool', 'int', 'real' or a sequence with 'int' and 'real', got {variable_type}"
+ 232 )
+ 233
+ 234 if isinstance(variable_type, str):
+ 235 assert (variable_type in VARIABLE_TYPE.__args__), assert_message
+ 236 if variable_type == 'real':
+ 237 self.indexes_float = indexes
+ 238 else:
+ 239 self.indexes_int = indexes
240
- 241 assert len(variable_type) == self.dim, (
- 242 f"\n variable_type must have a length equal dimension. "
- 243 f"Should be {self.dim}, got {len(variable_type)}"
- 244 )
- 245 assert 'bool' not in variable_type, (
- 246 "don't use 'bool' if variable_type is a sequence, "
- 247 "for 'boolean' case use 'int' and specify boundary as (0,1)"
- 248 )
- 249 assert all(v in VARIABLE_TYPE.__args__ for v in variable_type), assert_message
- 250
- 251 vartypes = np.array(variable_type)
- 252 self.indexes_int = indexes[vartypes == 'int']
- 253 self.indexes_float = indexes[vartypes == 'real']
- 254
- 255 def _set_var_boundaries(
- 256 self,
- 257 variable_type: Union[str, Sequence[str]],
- 258 variable_boundaries
- 259 ):
- 260 if isinstance(variable_type, str) and variable_type == 'bool':
- 261 self.var_bounds = [(0, 1)] * self.dim
- 262 else:
- 263
- 264 if is_numpy(variable_boundaries):
- 265 assert variable_boundaries.shape == (self.dim, 2), (
- 266 f"\n if variable_boundaries is numpy array, it must be with shape (dim, 2)"
- 267 )
- 268 else:
- 269 assert len(variable_boundaries) == self.dim and all((len(t) == 2 for t in variable_boundaries)), (
- 270 "\n if variable_boundaries is sequence, "
- 271 "it must be with len dim and boundary for each variable must be a tuple of length two"
- 272 )
- 273
- 274 for i in variable_boundaries:
- 275 assert i[0] <= i[1], "\n lower_boundaries must be smaller than upper_boundaries [lower,upper]"
- 276
- 277 self.var_bounds = [(i[0], i[1]) for i in variable_boundaries]
+ 241 else: # sequence case
+ 242
+ 243 assert len(variable_type) == self.dim, (
+ 244 f"\n variable_type must have a length equal dimension. "
+ 245 f"Should be {self.dim}, got {len(variable_type)}"
+ 246 )
+ 247 assert 'bool' not in variable_type, (
+ 248 "don't use 'bool' if variable_type is a sequence, "
+ 249 "for 'boolean' case use 'int' and specify boundary as (0,1)"
+ 250 )
+ 251 assert all(v in VARIABLE_TYPE.__args__ for v in variable_type), assert_message
+ 252
+ 253 vartypes = np.array(variable_type)
+ 254 self.indexes_int = indexes[vartypes == 'int']
+ 255 self.indexes_float = indexes[vartypes == 'real']
+ 256
+ 257 def _set_var_boundaries(
+ 258 self,
+ 259 variable_type: Union[str, Sequence[str]],
+ 260 variable_boundaries
+ 261 ):
+ 262 if isinstance(variable_type, str) and variable_type == 'bool':
+ 263 self.var_bounds = [(0, 1)] * self.dim
+ 264 else:
+ 265
+ 266 if is_numpy(variable_boundaries):
+ 267 assert variable_boundaries.shape == (self.dim, 2), (
+ 268 f"\n if variable_boundaries is numpy array, it must be with shape (dim, 2)"
+ 269 )
+ 270 else:
+ 271 assert len(variable_boundaries) == self.dim and all((len(t) == 2 for t in variable_boundaries)), (
+ 272 "\n if variable_boundaries is sequence, "
+ 273 "it must be with len dim and boundary for each variable must be a tuple of length two"
+ 274 )
+ 275
+ 276 for i in variable_boundaries:
+ 277 assert i[0] <= i[1], "\n lower_boundaries must be smaller than upper_boundaries [lower,upper]"
278
- 279 def _set_parents_count(self, parents_portion: float):
+ 279 self.var_bounds = [(i[0], i[1]) for i in variable_boundaries]
280
- 281 self.parents_count = int(parents_portion * self.population_size)
- 282 assert self.population_size >= self.parents_count > 1, (
- 283 f'parents count {self.parents_count} cannot be less than population size {self.population_size}'
- 284 )
- 285 trl = self.population_size - self.parents_count
- 286 if trl % 2 != 0:
- 287 self.parents_count += 1
- 288
- 289 def _set_elit_count(self, pop_size: int, elit_ratio: Union[float, int]):
+ 281 def _set_parents_count(self, parents_portion: float):
+ 282
+ 283 self.parents_count = int(parents_portion * self.population_size)
+ 284 assert self.population_size >= self.parents_count > 1, (
+ 285 f'parents count {self.parents_count} cannot be less than population size {self.population_size}'
+ 286 )
+ 287 trl = self.population_size - self.parents_count
+ 288 if trl % 2 != 0:
+ 289 self.parents_count += 1
290
- 291 assert elit_ratio >= 0
- 292 self.elit_count = elit_ratio if isinstance(elit_ratio, str) else math.ceil(pop_size*elit_ratio)
- 293
- 294 def _set_max_iterations(self):
+ 291 def _set_elit_count(self, pop_size: int, elit_ratio: Union[float, int]):
+ 292
+ 293 assert elit_ratio >= 0
+ 294 self.elit_count = elit_ratio if isinstance(elit_ratio, str) else math.ceil(pop_size*elit_ratio)
295
- 296 if self.param.max_num_iteration is None:
- 297 iterate = 0
- 298 for i in range(0, self.dim):
- 299 bound_min, bound_max = self.var_bounds[i]
- 300 var_space = bound_max - bound_min
- 301 if i in self.indexes_int:
- 302 iterate += var_space * self.dim * (100 / self.population_size)
- 303 else:
- 304 iterate += var_space * 50 * (100 / self.population_size)
- 305 iterate = int(iterate)
- 306 if (iterate * self.population_size) > 10000000:
- 307 iterate = 10000000 / self.population_size
- 308
- 309 self.max_iterations = fast_min(iterate, 8000)
- 310 else:
- 311 assert self.param.max_num_iteration > 0
- 312 self.max_iterations = math.ceil(self.param.max_num_iteration)
- 313
- 314 max_it = self.param.max_iteration_without_improv
- 315 if max_it is None:
- 316 self.max_stagnations = self.max_iterations + 1
- 317 else:
- 318 self.max_stagnations = math.ceil(max_it)
- 319
- 320 #endregion
+ 296 def _set_max_iterations(self):
+ 297
+ 298 if self.param.max_num_iteration is None:
+ 299 iterate = 0
+ 300 for i in range(0, self.dim):
+ 301 bound_min, bound_max = self.var_bounds[i]
+ 302 var_space = bound_max - bound_min
+ 303 if i in self.indexes_int:
+ 304 iterate += var_space * self.dim * (100 / self.population_size)
+ 305 else:
+ 306 iterate += var_space * 50 * (100 / self.population_size)
+ 307 iterate = int(iterate)
+ 308 if (iterate * self.population_size) > 10000000:
+ 309 iterate = 10000000 / self.population_size
+ 310
+ 311 self.max_iterations = fast_min(iterate, 8000)
+ 312 else:
+ 313 assert self.param.max_num_iteration > 0
+ 314 self.max_iterations = math.ceil(self.param.max_num_iteration)
+ 315
+ 316 max_it = self.param.max_iteration_without_improv
+ 317 if max_it is None:
+ 318 self.max_stagnations = self.max_iterations + 1
+ 319 else:
+ 320 self.max_stagnations = math.ceil(max_it)
321
- 322 #region REPORT
+ 322 #endregion
323
- 324 def _set_report(self):
- 325 """
- 326 creates default report checker
- 327 """
- 328 self.checked_reports = [
- 329 # item 0 cuz scores will be sorted and min item is items[0]
- 330 ('report', operator.itemgetter(0))
- 331 ]
- 332
- 333 def _clear_report(self):
- 334 """
- 335 removes all report objects
- 336 """
- 337 fields = [f for f in vars(self).keys() if f.startswith('report')]
- 338 for attr in fields:
- 339 delattr(self, attr)
- 340
- 341 def _init_report(self):
- 342 """
- 343 makes empty report fields
- 344 """
- 345 for name, _ in self.checked_reports:
- 346 setattr(self, name, [])
- 347
- 348 def _update_report(self, scores: array1D):
- 349 """
- 350 append report value to the end of field
- 351 """
- 352 for name, func in self.checked_reports:
- 353 getattr(self, name).append(
- 354 func(scores)
- 355 )
- 356
- 357 #endregion
+ 324 #region REPORT
+ 325
+ 326 def _set_report(self):
+ 327 """
+ 328 creates default report checker
+ 329 """
+ 330 self.checked_reports = [
+ 331 # item 0 cuz scores will be sorted and min item is items[0]
+ 332 ('report', operator.itemgetter(0))
+ 333 ]
+ 334
+ 335 def _clear_report(self):
+ 336 """
+ 337 removes all report objects
+ 338 """
+ 339 fields = [f for f in vars(self).keys() if f.startswith('report')]
+ 340 for attr in fields:
+ 341 delattr(self, attr)
+ 342
+ 343 def _init_report(self):
+ 344 """
+ 345 makes empty report fields
+ 346 """
+ 347 for name, _ in self.checked_reports:
+ 348 setattr(self, name, [])
+ 349
+ 350 def _update_report(self, scores: array1D):
+ 351 """
+ 352 append report value to the end of field
+ 353 """
+ 354 for name, func in self.checked_reports:
+ 355 getattr(self, name).append(
+ 356 func(scores)
+ 357 )
358
- 359 #region RUN METHODS
+ 359 #endregion
360
- 361 def _progress(self, count: int, total: int, status: str = ''):
+ 361 #region RUN METHODS
362
- 363 part = count / total
+ 363 def _progress(self, count: int, total: int, status: str = ''):
364
- 365 filled_len = round(GeneticAlgorithm2.PROGRESS_BAR_LEN * part)
- 366 percents = round(100.0 * part, 1)
- 367 bar = '|' * filled_len + '_' * (GeneticAlgorithm2.PROGRESS_BAR_LEN - filled_len)
- 368
- 369 self.progress_stream.write('\r%s %s%s %s' % (bar, percents, '%', status))
- 370 self.progress_stream.flush()
- 371
- 372 def __str__(self):
- 373 return f"Genetic algorithm object with parameters {self.param}"
- 374
- 375 def __repr__(self):
- 376 return self.__str__()
- 377
- 378 def _simulate(self, sample: array1D):
+ 365 part = count / total
+ 366
+ 367 filled_len = round(GeneticAlgorithm2.PROGRESS_BAR_LEN * part)
+ 368 percents = round(100.0 * part, 1)
+ 369 bar = '|' * filled_len + '_' * (GeneticAlgorithm2.PROGRESS_BAR_LEN - filled_len)
+ 370
+ 371 self.progress_stream.write('\r%s %s%s %s' % (bar, percents, '%', status))
+ 372 self.progress_stream.flush()
+ 373
+ 374 def __str__(self):
+ 375 return f"Genetic algorithm object with parameters {self.param}"
+ 376
+ 377 def __repr__(self):
+ 378 return self.__str__()
379
- 380 from func_timeout import func_timeout, FunctionTimedOut
+ 380 def _simulate(self, sample: array1D):
381
- 382 obj = None
- 383 eval_time = time.time()
- 384 try:
- 385 obj = func_timeout(
- 386 self.funtimeout,
- 387 lambda: self.f(sample)
- 388 )
- 389 except FunctionTimedOut:
- 390 print("given function is not applicable")
- 391 eval_time = time.time() - eval_time
- 392
- 393 assert obj is not None, (
- 394 f"the given function was running like {eval_time} seconds and does not provide any output"
- 395 )
- 396
- 397 tp = type(obj)
- 398 assert (
- 399 tp in (int, float) or np.issubdtype(tp, np.floating) or np.issubdtype(tp, np.integer)
- 400 ), f"Minimized function should return a number, but got '{obj}' object with type {tp}"
- 401
- 402 return obj, eval_time
+ 382 from func_timeout import func_timeout, FunctionTimedOut
+ 383
+ 384 obj = None
+ 385 eval_time = time.time()
+ 386 try:
+ 387 obj = func_timeout(
+ 388 self.funtimeout,
+ 389 lambda: self.f(sample)
+ 390 )
+ 391 except FunctionTimedOut:
+ 392 print("given function is not applicable")
+ 393 eval_time = time.time() - eval_time
+ 394
+ 395 assert obj is not None, (
+ 396 f"the given function was running like {eval_time} seconds and does not provide any output"
+ 397 )
+ 398
+ 399 tp = type(obj)
+ 400 assert (
+ 401 tp in (int, float) or np.issubdtype(tp, np.floating) or np.issubdtype(tp, np.integer)
+ 402 ), f"Minimized function should return a number, but got '{obj}' object with type {tp}"
403
- 404 def _set_mutation_indexes(self, mutation_indexes: Optional[Sequence[int]]):
+ 404 return obj, eval_time
405
- 406 if mutation_indexes is None:
- 407 self.indexes_float_mut = self.indexes_float
- 408 self.indexes_int_mut = self.indexes_int
- 409 else:
- 410 tmp_indexes = set(mutation_indexes)
- 411 self.indexes_int_mut = np.array(list(tmp_indexes.intersection(self.indexes_int)))
- 412 self.indexes_float_mut = np.array(list(tmp_indexes.intersection(self.indexes_float)))
- 413
- 414 if self.indexes_float_mut.size == 0 and self.indexes_int_mut.size == 0:
- 415 warnings.warn(f"No mutation dimensions!!! Check ur mutation indexes!!")
- 416
- 417 #@profile
- 418 def run(
- 419 self,
- 420 no_plot: bool = False,
- 421 disable_printing: bool = False,
- 422 progress_bar_stream: Optional[str] = 'stdout',
- 423
- 424 # deprecated
- 425 disable_progress_bar: bool = False,
- 426
- 427 set_function: SetFunctionToMinimize = None,
- 428 apply_function_to_parents: bool = False,
- 429 start_generation: GenerationConvertible = Generation(),
- 430 studEA: bool = False,
- 431 mutation_indexes: Optional[Union[Sequence[int], Set[int]]] = None,
- 432
- 433 init_creator: Optional[Callable[[], array1D]] = None,
- 434 init_oppositors: Optional[Sequence[Callable[[array1D], array1D]]] = None,
- 435
- 436 duplicates_oppositor: Optional[Callable[[array1D], array1D]] = None,
- 437 remove_duplicates_generation_step: Optional[int] = None,
- 438
- 439 revolution_oppositor: Optional[Callable[[array1D], array1D]] = None,
- 440 revolution_after_stagnation_step: Optional[int] = None,
- 441 revolution_part: float = 0.3,
- 442
- 443 population_initializer: Tuple[
- 444 int, Callable[[array2D, array1D], Tuple[array2D, array1D]]
- 445 ] = get_population_initializer(select_best_of=1, local_optimization_step='never', local_optimizer=None),
- 446
- 447 stop_when_reached: Optional[float] = None,
- 448 callbacks: Optional[Sequence[SimpleCallbackFunc]] = None,
- 449 middle_callbacks: Optional[Sequence[MiddleCallbackFunc]] = None, #+
- 450 time_limit_secs: Optional[float] = None,
- 451 save_last_generation_as: Optional[str] = None,
- 452 seed: Optional[int] = None
- 453 ):
- 454 """
- 455 runs optimization process
- 456
- 457 Args:
- 458 no_plot: do not plot results using matplotlib by default
- 459
- 460 disable_printing: do not print log info of optimization process
+ 406 def _set_mutation_indexes(self, mutation_indexes: Optional[Iterable[int]]):
+ 407
+ 408 if mutation_indexes is None:
+ 409 self.indexes_float_mut = self.indexes_float
+ 410 self.indexes_int_mut = self.indexes_int
+ 411 else:
+ 412 tmp_indexes = set(mutation_indexes)
+ 413 self.indexes_int_mut = np.array(list(tmp_indexes.intersection(self.indexes_int)))
+ 414 self.indexes_float_mut = np.array(list(tmp_indexes.intersection(self.indexes_float)))
+ 415
+ 416 if self.indexes_float_mut.size == 0 and self.indexes_int_mut.size == 0:
+ 417 warnings.warn(f"No mutation dimensions!!! Check ur mutation indexes!!")
+ 418
+ 419 #@profile
+ 420 def run(
+ 421 self,
+ 422 no_plot: bool = False,
+ 423 disable_printing: bool = False,
+ 424 progress_bar_stream: Optional[str] = 'stdout',
+ 425
+ 426 # deprecated
+ 427 disable_progress_bar: bool = False,
+ 428
+ 429 set_function: SetFunctionToMinimize = None,
+ 430 apply_function_to_parents: bool = False,
+ 431 start_generation: GenerationConvertible = Generation(),
+ 432 studEA: bool = False,
+ 433 mutation_indexes: Optional[Iterable[int]] = None,
+ 434
+ 435 init_creator: Optional[CreatorFunc] = None,
+ 436 init_oppositors: Optional[Sequence[OppositorFunc]] = None,
+ 437
+ 438 duplicates_oppositor: Optional[OppositorFunc] = None,
+ 439 remove_duplicates_generation_step: Optional[int] = None,
+ 440
+ 441 revolution_oppositor: Optional[OppositorFunc] = None,
+ 442 revolution_after_stagnation_step: Optional[int] = None,
+ 443 revolution_part: float = 0.3,
+ 444
+ 445 population_initializer: Tuple[
+ 446 int, PopulationModifier
+ 447 ] = get_population_initializer(select_best_of=1, local_optimization_step='never', local_optimizer=None),
+ 448
+ 449 stop_when_reached: Optional[float] = None,
+ 450 callbacks: Optional[Sequence[SimpleCallbackFunc]] = None,
+ 451 middle_callbacks: Optional[Sequence[MiddleCallbackFunc]] = None, #+
+ 452 time_limit_secs: Optional[float] = None,
+ 453 save_last_generation_as: Optional[str] = None,
+ 454 seed: Optional[int] = None
+ 455 ):
+ 456 """
+ 457 runs optimization process
+ 458
+ 459 Args:
+ 460 no_plot: do not plot results using matplotlib by default
461
- 462 progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
+ 462 disable_printing: do not print log info of optimization process
463
- 464 disable_progress_bar:
+ 464 progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
465
- 466 set_function : 2D-array -> 1D-array function,
- 467 which applyes to matrix of population (size (samples, dimention))
- 468 to estimate their values
+ 466 disable_progress_bar: deprecated
+ 467
+ 468 set_function: set function to be used instead of usual function
469
- 470 apply_function_to_parents: apply function to parents from previous generation (if it's needed)
+ 470 apply_function_to_parents: whether to apply function to parents from previous generation (if it's needed)
471
- 472 start_generation: Generation object or a dictionary with structure
- 473 {'variables':2D-array of samples, 'scores': function values on samples}
- 474 or path to .npz file (str) with saved generation; if 'scores' value is None the scores will be compute
+ 472 start_generation: initial generation object of any `GenerationConvertible` type
+ 473
+ 474 studEA: using stud EA strategy (crossover with best object always)
475
- 476 studEA: using stud EA strategy (crossover with best object always)
+ 476 mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
477
- 478 mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
- 479
- 480 init_creator: the function creates population samples.
- 481 By default -- random uniform for real variables and random uniform for int
- 482 init_oppositors: the list of oppositors creates oppositions for base population. No by default
- 483 duplicates_oppositor: oppositor for applying after duplicates removing.
- 484 By default -- using just random initializer from creator
- 485 remove_duplicates_generation_step: step for removing duplicates (have a sense with discrete tasks).
- 486 No by default
+ 478 init_creator: the function creates population samples.
+ 479 By default -- random uniform for real variables and random uniform for int
+ 480 init_oppositors: the list of oppositors creates oppositions for base population. No by default
+ 481
+ 482 duplicates_oppositor: oppositor for applying after duplicates removing.
+ 483 By default -- using just random initializer from creator
+ 484 remove_duplicates_generation_step: step for removing duplicates (have a sense with discrete tasks).
+ 485 No by default
+ 486
487 revolution_oppositor: oppositor for revolution time. No by default
488 revolution_after_stagnation_step: create revolution after this generations of stagnation. No by default
489 revolution_part: float, the part of generation to being oppose. By default is 0.3
@@ -1818,7 +1816,7 @@
496 callbacks: sequence of callback functions with structure:
497 (generation_number, report_list, last_population, last_scores) -> do some action
498
- 499 middle_callbacks: sequence of functions made MiddleCallbacks class
+ 499 middle_callbacks: sequence of functions made `MiddleCallback` class
500
501 time_limit_secs: limit time of working (in seconds)
502
@@ -2523,153 +2521,153 @@
- 74 def __init__(
- 75 self,
- 76 function: FunctionToMinimize,
- 77
- 78 dimension: int,
- 79 variable_type: Union[VARIABLE_TYPE, Sequence[VARIABLE_TYPE]] = 'bool',
- 80 variable_boundaries: Optional[Union[array2D, Sequence[Tuple[float, float]]]] = None,
- 81
- 82 variable_type_mixed=None,
+ 76 def __init__(
+ 77 self,
+ 78 function: FunctionToMinimize,
+ 79
+ 80 dimension: int,
+ 81 variable_type: Union[VARIABLE_TYPE, Sequence[VARIABLE_TYPE]] = 'bool',
+ 82 variable_boundaries: Optional[Union[array2D, Sequence[Tuple[float, float]]]] = None,
83
- 84 function_timeout: Optional[float] = None,
- 85 algorithm_parameters: Union[AlgorithmParams, Dict[str, Any]] = default_params
- 86 ):
- 87 """
- 88 initializes the GA object and performs main checks
- 89
- 90 Args:
- 91 function: the given objective function to be minimized
- 92 dimension: the number of decision variables, the population samples dimention
- 93
- 94 variable_type: string means the variable type for all variables,
- 95 for mixed types use sequence of strings of type for each variable
- 96
- 97 variable_boundaries: leave it None if variable_type is 'bool';
- 98 otherwise provide a sequence of tuples of length two as boundaries for each variable;
- 99 the length of the array must be equal dimension.
-100 For example, ([0,100], [0,200]) determines
-101 lower boundary 0 and upper boundary 100 for first
-102 and upper boundary 200 for second variable
-103 and dimension must be 2.
-104
-105 variable_type_mixed -- deprecated
+ 84 variable_type_mixed=None,
+ 85
+ 86 function_timeout: Optional[float] = None,
+ 87 algorithm_parameters: Union[AlgorithmParams, Dict[str, Any]] = default_params
+ 88 ):
+ 89 """
+ 90 initializes the GA object and performs main checks
+ 91
+ 92 Args:
+ 93 function: the given objective function to be minimized
+ 94 dimension: the number of decision variables, the population samples dimention
+ 95
+ 96 variable_type: string means the variable type for all variables,
+ 97 for mixed types use sequence of strings of type for each variable
+ 98
+ 99 variable_boundaries: leave it None if variable_type is 'bool';
+100 otherwise provide a sequence of tuples of length two as boundaries for each variable;
+101 the length of the array must be equal dimension.
+102 For example, ([0,100], [0,200]) determines
+103 lower boundary 0 and upper boundary 100 for first
+104 and upper boundary 200 for second variable
+105 and dimension must be 2.
106
-107 function_timeout: if the given function does not provide
-108 output before function_timeout (unit is seconds) the algorithm raises error.
-109 For example, when there is an infinite loop in the given function.
-110 `None` means disabling
-111
-112 algorithm_parameters: AlgorithmParams object or usual dictionary with algorithm parameter;
-113 it is not mandatory to provide all possible parameters
-114
-115 Notes:
-116 - This implementation minimizes the given objective function.
-117 For maximization u can multiply the function by -1 (for instance): the absolute
-118 value of the output would be the actual objective function
-119
-120 for more details and examples of implementation please visit:
-121 https://github.com/PasaOpasen/geneticalgorithm2
-122
-123 """
-124
-125 # all default fields
+107 variable_type_mixed -- deprecated
+108
+109 function_timeout: if the given function does not provide
+110 output before function_timeout (unit is seconds) the algorithm raises error.
+111 For example, when there is an infinite loop in the given function.
+112 `None` means disabling
+113
+114 algorithm_parameters: AlgorithmParams object or usual dictionary with algorithm parameter;
+115 it is not mandatory to provide all possible parameters
+116
+117 Notes:
+118 - This implementation minimizes the given objective function.
+119 For maximization u can multiply the function by -1 (for instance): the absolute
+120 value of the output would be the actual objective function
+121
+122 for more details and examples of implementation please visit:
+123 https://github.com/PasaOpasen/geneticalgorithm2
+124
+125 """
126
-127 # self.crossover: Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] = None
-128 # self.real_mutation: Callable[[float, float, float], float] = None
-129 # self.discrete_mutation: Callable[[int, int, int], int] = None
-130 # self.selection: Callable[[np.ndarray, int], np.ndarray] = None
-131
-132 self.f: Callable[[array1D], float] = None
-133 self.funtimeout: float = None
-134 self.set_function: Callable[[np.ndarray], np.ndarray] = None
-135
-136 # self.dim: int = None
-137 self.var_bounds: List[Tuple[Union[int, float], Union[int, float]]] = None
-138 # self.indexes_int: np.ndarray = None
-139 # self.indexes_float: np.ndarray = None
-140
-141 self.checked_reports: List[Tuple[str, Callable[[array1D], None]]] = None
+127 # all default fields
+128
+129 # self.crossover: Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] = None
+130 # self.real_mutation: Callable[[float, float, float], float] = None
+131 # self.discrete_mutation: Callable[[int, int, int], int] = None
+132 # self.selection: Callable[[np.ndarray, int], np.ndarray] = None
+133
+134 self.f: Callable[[array1D], float] = None
+135 self.funtimeout: float = None
+136 self.set_function: Callable[[np.ndarray], np.ndarray] = None
+137
+138 # self.dim: int = None
+139 self.var_bounds: List[Tuple[Union[int, float], Union[int, float]]] = None
+140 # self.indexes_int: np.ndarray = None
+141 # self.indexes_float: np.ndarray = None
142
-143 self.population_size: int = None
-144 self.progress_stream = None
-145
-146 # input algorithm's parameters
+143 self.checked_reports: List[Tuple[str, Callable[[array1D], None]]] = None
+144
+145 self.population_size: int = None
+146 self.progress_stream = None
147
-148 assert isinstance(algorithm_parameters, (dict, AlgorithmParams)), (
-149 "algorithm_parameters must be dict or AlgorithmParams object"
-150 )
-151 if not isinstance(algorithm_parameters, AlgorithmParams):
-152 algorithm_parameters = AlgorithmParams.from_dict(algorithm_parameters)
-153 algorithm_parameters.validate()
-154 self.param = algorithm_parameters
-155
-156 self.crossover, self.real_mutation, self.discrete_mutation, self.selection = algorithm_parameters.get_CMS_funcs()
+148 # input algorithm's parameters
+149
+150 assert isinstance(algorithm_parameters, (dict, AlgorithmParams)), (
+151 "algorithm_parameters must be dict or AlgorithmParams object"
+152 )
+153 if not isinstance(algorithm_parameters, AlgorithmParams):
+154 algorithm_parameters = AlgorithmParams.from_dict(algorithm_parameters)
+155 algorithm_parameters.validate()
+156 self.param = algorithm_parameters
157
-158 # dimension and area bounds
-159 self.dim = int(dimension)
-160 assert self.dim > 0, f"dimension count must be int and >0, gotten {dimension}"
-161
-162 if variable_type_mixed is not None:
-163 warnings.warn(
-164 f"argument variable_type_mixed is deprecated and will be removed at version 7\n "
-165 f"use variable_type={tuple(variable_type_mixed)} instead"
-166 )
-167 variable_type = variable_type_mixed
-168 self._set_types_indexes(variable_type) # types indexes
-169 self._set_var_boundaries(variable_type, variable_boundaries) # input variables' boundaries
-170
-171 # fix mutation probs
+158 self.crossover, self.real_mutation, self.discrete_mutation, self.selection = algorithm_parameters.get_CMS_funcs()
+159
+160 # dimension and area bounds
+161 self.dim = int(dimension)
+162 assert self.dim > 0, f"dimension count must be int and >0, gotten {dimension}"
+163
+164 if variable_type_mixed is not None:
+165 warnings.warn(
+166 f"argument variable_type_mixed is deprecated and will be removed at version 7\n "
+167 f"use variable_type={tuple(variable_type_mixed)} instead"
+168 )
+169 variable_type = variable_type_mixed
+170 self._set_types_indexes(variable_type) # types indexes
+171 self._set_var_boundaries(variable_type, variable_boundaries) # input variables' boundaries
172
-173 assert can_be_prob(self.param.mutation_probability)
-174 self.prob_mut = self.param.mutation_probability
-175 assert self.param.mutation_discrete_probability is None or can_be_prob(self.param.mutation_discrete_probability)
-176 self.prob_mut_discrete = self.param.mutation_discrete_probability or self.prob_mut
-177
-178 if self.param.crossover_probability is not None:
-179 warnings.warn(
-180 f"crossover_probability is deprecated and will be removed in version 7. "
-181 f"Reason: it's old and has no sense"
-182 )
-183
-184 #############################################################
-185 # input function
-186 assert (callable(function)), "function must be callable!"
-187 self.f = function
-188
-189 if function_timeout is not None and function_timeout > 0:
-190 try:
-191 from func_timeout import func_timeout, FunctionTimedOut
-192 except ModuleNotFoundError:
-193 raise ModuleNotFoundError(
-194 "function_timeout > 0 needs additional package func_timeout\n"
-195 "run `python -m pip install func_timeout`\n"
-196 "or disable this parameter: function_timeout=None"
-197 )
-198
-199 self.funtimeout = None if function_timeout is None else float(function_timeout)
+173 # fix mutation probs
+174
+175 assert can_be_prob(self.param.mutation_probability)
+176 self.prob_mut = self.param.mutation_probability
+177 assert self.param.mutation_discrete_probability is None or can_be_prob(self.param.mutation_discrete_probability)
+178 self.prob_mut_discrete = self.param.mutation_discrete_probability or self.prob_mut
+179
+180 if self.param.crossover_probability is not None:
+181 warnings.warn(
+182 f"crossover_probability is deprecated and will be removed in version 7. "
+183 f"Reason: it's old and has no sense"
+184 )
+185
+186 #############################################################
+187 # input function
+188 assert (callable(function)), "function must be callable!"
+189 self.f = function
+190
+191 if function_timeout is not None and function_timeout > 0:
+192 try:
+193 from func_timeout import func_timeout, FunctionTimedOut
+194 except ModuleNotFoundError:
+195 raise ModuleNotFoundError(
+196 "function_timeout > 0 needs additional package func_timeout\n"
+197 "run `python -m pip install func_timeout`\n"
+198 "or disable this parameter: function_timeout=None"
+199 )
200
-201 #############################################################
-202
-203 self.population_size = int(self.param.population_size)
-204 self._set_parents_count(self.param.parents_portion)
-205 self._set_elit_count(self.population_size, self.param.elit_ratio)
-206 assert self.parents_count >= self.elit_count, (
-207 f"\n number of parents ({self.parents_count}) "
-208 f"must be greater than number of elits ({self.elit_count})"
-209 )
-210
-211 self._set_max_iterations()
+201 self.funtimeout = None if function_timeout is None else float(function_timeout)
+202
+203 #############################################################
+204
+205 self.population_size = int(self.param.population_size)
+206 self._set_parents_count(self.param.parents_portion)
+207 self._set_elit_count(self.population_size, self.param.elit_ratio)
+208 assert self.parents_count >= self.elit_count, (
+209 f"\n number of parents ({self.parents_count}) "
+210 f"must be greater than number of elits ({self.elit_count})"
+211 )
212
-213 self._set_report()
+213 self._set_max_iterations()
214
-215 # specify this function to speed up or change default behaviour
-216 self.fill_children: Optional[Callable[[array2D, int], None]] = None
-217 """
-218 custom function which adds children for population POP
-219 where POP[:parents_count] are parents lines and next lines are for children
-220 """
+215 self._set_report()
+216
+217 # specify this function to speed up or change default behaviour
+218 self.fill_children: Optional[Callable[[array2D, int], None]] = None
+219 """
+220 custom function which adds children for population POP
+221 where POP[:parents_count] are parents lines and next lines are for children
+222 """
@@ -2750,13 +2748,13 @@ Notes:
- 59 @property
-60 def output_dict(self):
-61 warnings.warn(
-62 "'output_dict' is deprecated and will be removed at version 7 \n"
-63 "use 'result' instead"
-64 )
-65 return self.result
+ 61 @property
+62 def output_dict(self):
+63 warnings.warn(
+64 "'output_dict' is deprecated and will be removed at version 7 \n"
+65 "use 'result' instead"
+66 )
+67 return self.result
@@ -2772,10 +2770,10 @@ Notes:
- 67 @property
-68 def needs_mutation(self) -> bool:
-69 """whether the mutation is required"""
-70 return self.prob_mut > 0 or self.prob_mut_discrete > 0
+ 69 @property
+70 def needs_mutation(self) -> bool:
+71 """whether the mutation is required"""
+72 return self.prob_mut > 0 or self.prob_mut_discrete > 0
@@ -2924,81 +2922,79 @@ Notes:
def
- run( self, no_plot: bool = False, disable_printing: bool = False, progress_bar_stream: Union[str, NoneType] = 'stdout', disable_progress_bar: bool = False, set_function: collections.abc.Callable[numpy.ndarray, numpy.ndarray] = None, apply_function_to_parents: bool = False, start_generation: Union[geneticalgorithm2.data_types.generation.Generation, str, dict[Literal['population', 'scores'], numpy.ndarray], numpy.ndarray, tuple[Union[numpy.ndarray, NoneType], Union[numpy.ndarray, NoneType]]] = Generation(variables=None, scores=None), studEA: bool = False, mutation_indexes: Union[Sequence[int], Set[int], NoneType] = None, init_creator: Union[collections.abc.Callable[numpy.ndarray], NoneType] = None, init_oppositors: Union[collections.abc.Sequence[collections.abc.Callable[numpy.ndarray, numpy.ndarray]], NoneType] = None, duplicates_oppositor: Union[collections.abc.Callable[numpy.ndarray, numpy.ndarray], NoneType] = None, remove_duplicates_generation_step: Union[int, NoneType] = None, revolution_oppositor: Union[collections.abc.Callable[numpy.ndarray, numpy.ndarray], NoneType] = None, revolution_after_stagnation_step: Union[int, NoneType] = None, revolution_part: float = 0.3, population_initializer: tuple[int, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]] = (1, <function get_population_initializer.<locals>.process_population>), stop_when_reached: Union[float, NoneType] = None, callbacks: Union[collections.abc.Sequence[collections.abc.Callable[int, List[float], numpy.ndarray, numpy.ndarray, NoneType]], NoneType] = None, middle_callbacks: Union[Sequence[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]], NoneType] = None, time_limit_secs: Union[float, NoneType] = None, save_last_generation_as: Union[str, NoneType] = None, seed: Union[int, NoneType] = None):
+ run( self, no_plot: bool = False, disable_printing: bool = False, progress_bar_stream: Union[str, NoneType] = 'stdout', disable_progress_bar: bool = False, set_function: collections.abc.Callable[numpy.ndarray, numpy.ndarray] = None, apply_function_to_parents: bool = False, start_generation: Union[geneticalgorithm2.data_types.generation.Generation, str, dict[Literal['population', 'scores'], numpy.ndarray], numpy.ndarray, tuple[Union[numpy.ndarray, NoneType], Union[numpy.ndarray, NoneType]]] = Generation(variables=None, scores=None), studEA: bool = False, mutation_indexes: Union[Iterable[int], NoneType] = None, init_creator: Union[Callable[[], numpy.ndarray], NoneType] = None, init_oppositors: Union[Sequence[Callable[[numpy.ndarray], numpy.ndarray]], NoneType] = None, duplicates_oppositor: Union[Callable[[numpy.ndarray], numpy.ndarray], NoneType] = None, remove_duplicates_generation_step: Union[int, NoneType] = None, revolution_oppositor: Union[Callable[[numpy.ndarray], numpy.ndarray], NoneType] = None, revolution_after_stagnation_step: Union[int, NoneType] = None, revolution_part: float = 0.3, population_initializer: tuple[int, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]] = (1, <function get_population_initializer.<locals>.process_population>), stop_when_reached: Union[float, NoneType] = None, callbacks: Union[collections.abc.Sequence[collections.abc.Callable[int, List[float], numpy.ndarray, numpy.ndarray, NoneType]], NoneType] = None, middle_callbacks: Union[Sequence[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]], NoneType] = None, time_limit_secs: Union[float, NoneType] = None, save_last_generation_as: Union[str, NoneType] = None, seed: Union[int, NoneType] = None):
- 418 def run(
- 419 self,
- 420 no_plot: bool = False,
- 421 disable_printing: bool = False,
- 422 progress_bar_stream: Optional[str] = 'stdout',
- 423
- 424 # deprecated
- 425 disable_progress_bar: bool = False,
- 426
- 427 set_function: SetFunctionToMinimize = None,
- 428 apply_function_to_parents: bool = False,
- 429 start_generation: GenerationConvertible = Generation(),
- 430 studEA: bool = False,
- 431 mutation_indexes: Optional[Union[Sequence[int], Set[int]]] = None,
- 432
- 433 init_creator: Optional[Callable[[], array1D]] = None,
- 434 init_oppositors: Optional[Sequence[Callable[[array1D], array1D]]] = None,
- 435
- 436 duplicates_oppositor: Optional[Callable[[array1D], array1D]] = None,
- 437 remove_duplicates_generation_step: Optional[int] = None,
- 438
- 439 revolution_oppositor: Optional[Callable[[array1D], array1D]] = None,
- 440 revolution_after_stagnation_step: Optional[int] = None,
- 441 revolution_part: float = 0.3,
- 442
- 443 population_initializer: Tuple[
- 444 int, Callable[[array2D, array1D], Tuple[array2D, array1D]]
- 445 ] = get_population_initializer(select_best_of=1, local_optimization_step='never', local_optimizer=None),
- 446
- 447 stop_when_reached: Optional[float] = None,
- 448 callbacks: Optional[Sequence[SimpleCallbackFunc]] = None,
- 449 middle_callbacks: Optional[Sequence[MiddleCallbackFunc]] = None, #+
- 450 time_limit_secs: Optional[float] = None,
- 451 save_last_generation_as: Optional[str] = None,
- 452 seed: Optional[int] = None
- 453 ):
- 454 """
- 455 runs optimization process
- 456
- 457 Args:
- 458 no_plot: do not plot results using matplotlib by default
- 459
- 460 disable_printing: do not print log info of optimization process
+ 420 def run(
+ 421 self,
+ 422 no_plot: bool = False,
+ 423 disable_printing: bool = False,
+ 424 progress_bar_stream: Optional[str] = 'stdout',
+ 425
+ 426 # deprecated
+ 427 disable_progress_bar: bool = False,
+ 428
+ 429 set_function: SetFunctionToMinimize = None,
+ 430 apply_function_to_parents: bool = False,
+ 431 start_generation: GenerationConvertible = Generation(),
+ 432 studEA: bool = False,
+ 433 mutation_indexes: Optional[Iterable[int]] = None,
+ 434
+ 435 init_creator: Optional[CreatorFunc] = None,
+ 436 init_oppositors: Optional[Sequence[OppositorFunc]] = None,
+ 437
+ 438 duplicates_oppositor: Optional[OppositorFunc] = None,
+ 439 remove_duplicates_generation_step: Optional[int] = None,
+ 440
+ 441 revolution_oppositor: Optional[OppositorFunc] = None,
+ 442 revolution_after_stagnation_step: Optional[int] = None,
+ 443 revolution_part: float = 0.3,
+ 444
+ 445 population_initializer: Tuple[
+ 446 int, PopulationModifier
+ 447 ] = get_population_initializer(select_best_of=1, local_optimization_step='never', local_optimizer=None),
+ 448
+ 449 stop_when_reached: Optional[float] = None,
+ 450 callbacks: Optional[Sequence[SimpleCallbackFunc]] = None,
+ 451 middle_callbacks: Optional[Sequence[MiddleCallbackFunc]] = None, #+
+ 452 time_limit_secs: Optional[float] = None,
+ 453 save_last_generation_as: Optional[str] = None,
+ 454 seed: Optional[int] = None
+ 455 ):
+ 456 """
+ 457 runs optimization process
+ 458
+ 459 Args:
+ 460 no_plot: do not plot results using matplotlib by default
461
- 462 progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
+ 462 disable_printing: do not print log info of optimization process
463
- 464 disable_progress_bar:
+ 464 progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
465
- 466 set_function : 2D-array -> 1D-array function,
- 467 which applyes to matrix of population (size (samples, dimention))
- 468 to estimate their values
+ 466 disable_progress_bar: deprecated
+ 467
+ 468 set_function: set function to be used instead of usual function
469
- 470 apply_function_to_parents: apply function to parents from previous generation (if it's needed)
+ 470 apply_function_to_parents: whether to apply function to parents from previous generation (if it's needed)
471
- 472 start_generation: Generation object or a dictionary with structure
- 473 {'variables':2D-array of samples, 'scores': function values on samples}
- 474 or path to .npz file (str) with saved generation; if 'scores' value is None the scores will be compute
+ 472 start_generation: initial generation object of any `GenerationConvertible` type
+ 473
+ 474 studEA: using stud EA strategy (crossover with best object always)
475
- 476 studEA: using stud EA strategy (crossover with best object always)
+ 476 mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
477
- 478 mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
- 479
- 480 init_creator: the function creates population samples.
- 481 By default -- random uniform for real variables and random uniform for int
- 482 init_oppositors: the list of oppositors creates oppositions for base population. No by default
- 483 duplicates_oppositor: oppositor for applying after duplicates removing.
- 484 By default -- using just random initializer from creator
- 485 remove_duplicates_generation_step: step for removing duplicates (have a sense with discrete tasks).
- 486 No by default
+ 478 init_creator: the function creates population samples.
+ 479 By default -- random uniform for real variables and random uniform for int
+ 480 init_oppositors: the list of oppositors creates oppositions for base population. No by default
+ 481
+ 482 duplicates_oppositor: oppositor for applying after duplicates removing.
+ 483 By default -- using just random initializer from creator
+ 484 remove_duplicates_generation_step: step for removing duplicates (have a sense with discrete tasks).
+ 485 No by default
+ 486
487 revolution_oppositor: oppositor for revolution time. No by default
488 revolution_after_stagnation_step: create revolution after this generations of stagnation. No by default
489 revolution_part: float, the part of generation to being oppose. By default is 0.3
@@ -3011,7 +3007,7 @@ Notes:
496 callbacks: sequence of callback functions with structure:
497 (generation_number, report_list, last_population, last_scores) -> do some action
498
- 499 middle_callbacks: sequence of functions made MiddleCallbacks class
+ 499 middle_callbacks: sequence of functions made `MiddleCallback` class
500
501 time_limit_secs: limit time of working (in seconds)
502
@@ -3579,14 +3575,10 @@ Arguments:
no_plot: do not plot results using matplotlib by default
disable_printing: do not print log info of optimization process
progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
-disable_progress_bar:
-set_function : 2D-array -> 1D-array function,
-which applyes to matrix of population (size (samples, dimention))
- to estimate their values
-apply_function_to_parents: apply function to parents from previous generation (if it's needed)
-start_generation: Generation object or a dictionary with structure
-{'variables':2D-array of samples, 'scores': function values on samples}
-or path to .npz file (str) with saved generation; if 'scores' value is None the scores will be compute
+disable_progress_bar: deprecated
+set_function: set function to be used instead of usual function
+apply_function_to_parents: whether to apply function to parents from previous generation (if it's needed)
+start_generation: initial generation object of any GenerationConvertible
type
studEA: using stud EA strategy (crossover with best object always)
mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
init_creator: the function creates population samples.
@@ -3604,7 +3596,7 @@ Arguments:
stop_when_reached: stop searching after reaching this value (it can be potential minimum or something else)
callbacks: sequence of callback functions with structure:
(generation_number, report_list, last_population, last_scores) -> do some action
-middle_callbacks: sequence of functions made MiddleCallbacks class
+middle_callbacks: sequence of functions made MiddleCallback
class
time_limit_secs: limit time of working (in seconds)
save_last_generation_as: path to .npz file for saving last_generation as numpy dictionary like
{'population': 2D-array, 'scores': 1D-array}, None if doesn't need to save in file
diff --git a/docs/geneticalgorithm2/population_initializer.html b/docs/geneticalgorithm2/population_initializer.html
index 949a99b..6edd301 100644
--- a/docs/geneticalgorithm2/population_initializer.html
+++ b/docs/geneticalgorithm2/population_initializer.html
@@ -31,6 +31,9 @@
API Documentation
+ -
+ PopulationModifier
+
-
LOCAL_OPTIMIZATION_STEP_CASE
@@ -67,90 +70,112 @@
5from .utils.aliases import TypeAlias, array1D, array2D
6
7
- 8LOCAL_OPTIMIZATION_STEP_CASE: TypeAlias = Literal['before_select', 'after_select', 'never']
+ 8PopulationModifier: TypeAlias = Callable[[array2D, array1D], Tuple[array2D, array1D]]
9"""
-10When the local optimization (candidates enhancing) must be performed:
-11 * 'never' -- don't do local optimization
-12 * 'before_select' -- before selection best N objects
-13 (example: do local optimization for 5N objects and select N best results)
-14 * 'after_select' -- do local optimization on best selected N objects
+10function (population matrix, population scores) -> (new matrix, new scores)
+11which will perform the bests selection and local optimization and other population transformations
+12"""
+13
+14LOCAL_OPTIMIZATION_STEP_CASE: TypeAlias = Literal['before_select', 'after_select', 'never']
15"""
-16
-17
-18def get_population_initializer(
-19 select_best_of: int = 4,
-20 local_optimization_step: LOCAL_OPTIMIZATION_STEP_CASE = 'never',
-21 local_optimizer: Optional[
-22 Callable[
-23 [array1D, float],
-24 Tuple[array1D, float]
-25 ]
-26 ] = None
-27) -> Tuple[int, Callable[[array2D, array1D], Tuple[array2D, array1D]]]:
-28 """
-29 Args:
-30 select_best_of: determines population size to select 1/select_best_of best part of start population.
-31 For example, for select_best_of = 4 and population_size = N there will be selected N best objects
-32 from 5N generated objects (if start_generation=None dictionary).
-33 If start_generation is not None dictionary, there will be selected best (start_generation) / N objects
-34 local_optimization_step: when to perform local optimization
-35 local_optimizer: the local optimization function (object array, its score) -> (modified array, its score)
-36
-37 Returns:
-38 select_best_of, function which will perform the selection and local optimization
-39 """
-40
-41 assert select_best_of > 0 and isinstance(select_best_of, int), (select_best_of, type(select_best_of))
+16When the local optimization (candidates enhancing) must be performed:
+17 * 'never' -- don't do local optimization
+18 * 'before_select' -- before selection best N objects
+19 (example: do local optimization for 5N objects and select N best results)
+20 * 'after_select' -- do local optimization on best selected N objects
+21"""
+22
+23
+24def get_population_initializer(
+25 select_best_of: int = 4,
+26 local_optimization_step: LOCAL_OPTIMIZATION_STEP_CASE = 'never',
+27 local_optimizer: Optional[
+28 Callable[
+29 [array1D, float],
+30 Tuple[array1D, float]
+31 ]
+32 ] = None
+33) -> Tuple[int, PopulationModifier]:
+34 """
+35 Args:
+36 select_best_of: determines population size to select 1/select_best_of best part of start population.
+37 For example, for select_best_of = 4 and population_size = N there will be selected N best objects
+38 from 5N generated objects (if start_generation=None dictionary).
+39 If start_generation is not None dictionary, there will be selected best (start_generation) / N objects
+40 local_optimization_step: when to perform local optimization
+41 local_optimizer: the local optimization function (object array, its score) -> (modified array, its score)
42
-43 assert local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__, (
-44 local_optimization_step, LOCAL_OPTIMIZATION_STEP_CASE.__args__
-45 )
-46
-47 if local_optimizer is None and local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]:
-48 raise Exception(
-49 f"for local_optimization_step from {LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]} "
-50 f"local_optimizer function mustn't be None"
-51 )
+43 Returns:
+44 select_best_of, population modifier
+45 """
+46
+47 assert select_best_of > 0 and isinstance(select_best_of, int), (select_best_of, type(select_best_of))
+48
+49 assert local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__, (
+50 local_optimization_step, LOCAL_OPTIMIZATION_STEP_CASE.__args__
+51 )
52
-53 def select_best(population: array2D, scores: array1D) -> Tuple[array2D, array1D]:
-54 args = np.argsort(scores)
-55 args = args[:round(args.size/select_best_of)]
-56 return population[args], scores[args]
-57
-58 def local_opt(population: array2D, scores: array1D):
-59 _pop, _score = zip(
-60 *[
-61 local_optimizer(population[i], scores[i]) for i in range(scores.size)
-62 ]
-63 )
-64 return np.array(_pop), np.array(_score)
-65
-66 #def Create_population(func, start_generation, expected_size, #variable_boundaries):
-67 #
-68 # if not (start_generation['variables'] is None):
-69 # pop = start_generation['variables']
-70 # scores = start_generation['scores']
-71 # if scores is None:
-72 # scores = np.array([func(pop[i, :]) for i in range(pop.shape[0])])
-73 # return pop, scores
-74
-75 def process_population(population: array2D, scores: array1D):
-76 if local_optimization_step == 'before_select':
-77 pop, s = local_opt(population, scores)
-78 return select_best(pop, s)
-79
-80 if local_optimization_step == 'after_select':
-81 pop, s = select_best(population, scores)
-82 return local_opt(pop, s)
-83
-84 #if local_optimization_step == 'never':
-85 return select_best(population, scores)
-86
-87 return select_best_of, process_population
+53 if local_optimizer is None and local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]:
+54 raise Exception(
+55 f"for local_optimization_step from {LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]} "
+56 f"local_optimizer function mustn't be None"
+57 )
+58
+59 def select_best(population: array2D, scores: array1D) -> Tuple[array2D, array1D]:
+60 args = np.argsort(scores)
+61 args = args[:round(args.size/select_best_of)]
+62 return population[args], scores[args]
+63
+64 def local_opt(population: array2D, scores: array1D):
+65 _pop, _score = zip(
+66 *[
+67 local_optimizer(population[i], scores[i]) for i in range(scores.size)
+68 ]
+69 )
+70 return np.array(_pop), np.array(_score)
+71
+72 #def Create_population(func, start_generation, expected_size, #variable_boundaries):
+73 #
+74 # if not (start_generation['variables'] is None):
+75 # pop = start_generation['variables']
+76 # scores = start_generation['scores']
+77 # if scores is None:
+78 # scores = np.array([func(pop[i, :]) for i in range(pop.shape[0])])
+79 # return pop, scores
+80
+81 def process_population(population: array2D, scores: array1D):
+82 if local_optimization_step == 'before_select':
+83 pop, s = local_opt(population, scores)
+84 return select_best(pop, s)
+85
+86 if local_optimization_step == 'after_select':
+87 pop, s = select_best(population, scores)
+88 return local_opt(pop, s)
+89
+90 #if local_optimization_step == 'never':
+91 return select_best(population, scores)
+92
+93 return select_best_of, process_population
+
+
+ PopulationModifier: typing_extensions.TypeAlias =
+
+ typing.Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], typing.Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]
+
+
+
+
+
+ function (population matrix, population scores) -> (new matrix, new scores)
+which will perform the bests selection and local optimization and other population transformations
+
+
+
+
LOCAL_OPTIMIZATION_STEP_CASE: typing_extensions.TypeAlias =
@@ -180,76 +205,76 @@
- 20def get_population_initializer(
-21 select_best_of: int = 4,
-22 local_optimization_step: LOCAL_OPTIMIZATION_STEP_CASE = 'never',
-23 local_optimizer: Optional[
-24 Callable[
-25 [array1D, float],
-26 Tuple[array1D, float]
-27 ]
-28 ] = None
-29) -> Tuple[int, Callable[[array2D, array1D], Tuple[array2D, array1D]]]:
-30 """
-31 Args:
-32 select_best_of: determines population size to select 1/select_best_of best part of start population.
-33 For example, for select_best_of = 4 and population_size = N there will be selected N best objects
-34 from 5N generated objects (if start_generation=None dictionary).
-35 If start_generation is not None dictionary, there will be selected best (start_generation) / N objects
-36 local_optimization_step: when to perform local optimization
-37 local_optimizer: the local optimization function (object array, its score) -> (modified array, its score)
-38
-39 Returns:
-40 select_best_of, function which will perform the selection and local optimization
-41 """
-42
-43 assert select_best_of > 0 and isinstance(select_best_of, int), (select_best_of, type(select_best_of))
+ 26def get_population_initializer(
+27 select_best_of: int = 4,
+28 local_optimization_step: LOCAL_OPTIMIZATION_STEP_CASE = 'never',
+29 local_optimizer: Optional[
+30 Callable[
+31 [array1D, float],
+32 Tuple[array1D, float]
+33 ]
+34 ] = None
+35) -> Tuple[int, PopulationModifier]:
+36 """
+37 Args:
+38 select_best_of: determines population size to select 1/select_best_of best part of start population.
+39 For example, for select_best_of = 4 and population_size = N there will be selected N best objects
+40 from 5N generated objects (if start_generation=None dictionary).
+41 If start_generation is not None dictionary, there will be selected best (start_generation) / N objects
+42 local_optimization_step: when to perform local optimization
+43 local_optimizer: the local optimization function (object array, its score) -> (modified array, its score)
44
-45 assert local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__, (
-46 local_optimization_step, LOCAL_OPTIMIZATION_STEP_CASE.__args__
-47 )
-48
-49 if local_optimizer is None and local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]:
-50 raise Exception(
-51 f"for local_optimization_step from {LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]} "
-52 f"local_optimizer function mustn't be None"
-53 )
+45 Returns:
+46 select_best_of, population modifier
+47 """
+48
+49 assert select_best_of > 0 and isinstance(select_best_of, int), (select_best_of, type(select_best_of))
+50
+51 assert local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__, (
+52 local_optimization_step, LOCAL_OPTIMIZATION_STEP_CASE.__args__
+53 )
54
-55 def select_best(population: array2D, scores: array1D) -> Tuple[array2D, array1D]:
-56 args = np.argsort(scores)
-57 args = args[:round(args.size/select_best_of)]
-58 return population[args], scores[args]
-59
-60 def local_opt(population: array2D, scores: array1D):
-61 _pop, _score = zip(
-62 *[
-63 local_optimizer(population[i], scores[i]) for i in range(scores.size)
-64 ]
-65 )
-66 return np.array(_pop), np.array(_score)
-67
-68 #def Create_population(func, start_generation, expected_size, #variable_boundaries):
-69 #
-70 # if not (start_generation['variables'] is None):
-71 # pop = start_generation['variables']
-72 # scores = start_generation['scores']
-73 # if scores is None:
-74 # scores = np.array([func(pop[i, :]) for i in range(pop.shape[0])])
-75 # return pop, scores
-76
-77 def process_population(population: array2D, scores: array1D):
-78 if local_optimization_step == 'before_select':
-79 pop, s = local_opt(population, scores)
-80 return select_best(pop, s)
-81
-82 if local_optimization_step == 'after_select':
-83 pop, s = select_best(population, scores)
-84 return local_opt(pop, s)
-85
-86 #if local_optimization_step == 'never':
-87 return select_best(population, scores)
-88
-89 return select_best_of, process_population
+55 if local_optimizer is None and local_optimization_step in LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]:
+56 raise Exception(
+57 f"for local_optimization_step from {LOCAL_OPTIMIZATION_STEP_CASE.__args__[:2]} "
+58 f"local_optimizer function mustn't be None"
+59 )
+60
+61 def select_best(population: array2D, scores: array1D) -> Tuple[array2D, array1D]:
+62 args = np.argsort(scores)
+63 args = args[:round(args.size/select_best_of)]
+64 return population[args], scores[args]
+65
+66 def local_opt(population: array2D, scores: array1D):
+67 _pop, _score = zip(
+68 *[
+69 local_optimizer(population[i], scores[i]) for i in range(scores.size)
+70 ]
+71 )
+72 return np.array(_pop), np.array(_score)
+73
+74 #def Create_population(func, start_generation, expected_size, #variable_boundaries):
+75 #
+76 # if not (start_generation['variables'] is None):
+77 # pop = start_generation['variables']
+78 # scores = start_generation['scores']
+79 # if scores is None:
+80 # scores = np.array([func(pop[i, :]) for i in range(pop.shape[0])])
+81 # return pop, scores
+82
+83 def process_population(population: array2D, scores: array1D):
+84 if local_optimization_step == 'before_select':
+85 pop, s = local_opt(population, scores)
+86 return select_best(pop, s)
+87
+88 if local_optimization_step == 'after_select':
+89 pop, s = select_best(population, scores)
+90 return local_opt(pop, s)
+91
+92 #if local_optimization_step == 'never':
+93 return select_best(population, scores)
+94
+95 return select_best_of, process_population
@@ -267,7 +292,7 @@
Returns:
- select_best_of, function which will perform the selection and local optimization
+ select_best_of, population modifier
diff --git a/docs/search.js b/docs/search.js
index 250ec80..9eabe84 100644
--- a/docs/search.js
+++ b/docs/search.js
@@ -1,6 +1,6 @@
window.pdocSearch = (function(){
/** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oGenetic Algorithm (Elitist version) for Python3.8+\n\nAn implementation of elitist genetic algorithm for solving problems with\ncontinuous, integers, or mixed variables.
\n\nrepo path: https://github.com/PasaOpasen/geneticalgorithm2\ncode docs path: https://pasaopasen.github.io/geneticalgorithm2/
\n"}, "geneticalgorithm2.geneticalgorithm2": {"fullname": "geneticalgorithm2.geneticalgorithm2", "modulename": "geneticalgorithm2.geneticalgorithm2", "kind": "module", "doc": "\n"}, "geneticalgorithm2.Population_initializer": {"fullname": "geneticalgorithm2.Population_initializer", "modulename": "geneticalgorithm2", "qualname": "Population_initializer", "kind": "function", "doc": "Arguments:
\n\n\n- select_best_of: determines population size to select 1/select_best_of best part of start population.\nFor example, for select_best_of = 4 and population_size = N there will be selected N best objects\n from 5N generated objects (if start_generation=None dictionary).\nIf start_generation is not None dictionary, there will be selected best (start_generation) / N objects
\n- local_optimization_step: when to perform local optimization
\n- local_optimizer: the local optimization function (object array, its score) -> (modified array, its score)
\n
\n\nReturns:
\n\n\n select_best_of, function which will perform the selection and local optimization
\n
\n", "signature": "(\tselect_best_of: int = 4,\tlocal_optimization_step: Literal['before_select', 'after_select', 'never'] = 'never',\tlocal_optimizer: Union[collections.abc.Callable[numpy.ndarray, float, tuple[numpy.ndarray, float]], NoneType] = None) -> tuple[int, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]]:", "funcdef": "def"}, "geneticalgorithm2.callbacks": {"fullname": "geneticalgorithm2.callbacks", "modulename": "geneticalgorithm2.callbacks", "kind": "module", "doc": "\n"}, "geneticalgorithm2.callbacks.data": {"fullname": "geneticalgorithm2.callbacks.data", "modulename": "geneticalgorithm2.callbacks.data", "kind": "module", "doc": "\n"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData", "kind": "class", "doc": "data object using in middle callbacks
\n", "bases": "geneticalgorithm2.data_types.base.DictLikeGetSet"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.__init__", "kind": "function", "doc": "\n", "signature": "(\treason_to_stop: Union[str, NoneType],\tlast_generation: geneticalgorithm2.data_types.generation.Generation,\tcurrent_generation: int,\treport_list: List[float],\tmutation_prob: float,\tmutation_discrete_prob: float,\tmutation: Callable[[float, float, float], float],\tmutation_discrete: Callable[[int, int, int], int],\tcrossover: Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]],\tselection: Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')],\tcurrent_stagnation: int,\tmax_stagnation: int,\tparents_portion: float,\telit_ratio: float,\tset_function: Callable[[ForwardRef('np.ndarray')], ForwardRef('np.ndarray')])"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.reason_to_stop", "kind": "variable", "doc": "\n", "annotation": ": Union[str, NoneType]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.last_generation", "kind": "variable", "doc": "\n", "annotation": ": geneticalgorithm2.data_types.generation.Generation"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.current_generation", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.report_list", "kind": "variable", "doc": "\n", "annotation": ": List[float]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.mutation_prob", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.mutation_discrete_prob", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.mutation", "kind": "variable", "doc": "\n", "annotation": ": Callable[[float, float, float], float]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.mutation_discrete", "kind": "variable", "doc": "\n", "annotation": ": Callable[[int, int, int], int]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.crossover", "kind": "variable", "doc": "\n", "annotation": ": Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.selection", "kind": "variable", "doc": "\n", "annotation": ": Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.current_stagnation", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.max_stagnation", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.parents_portion", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.elit_ratio", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.set_function", "kind": "variable", "doc": "\n", "annotation": ": Callable[[ForwardRef('np.ndarray')], ForwardRef('np.ndarray')]"}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"fullname": "geneticalgorithm2.callbacks.data.SimpleCallbackFunc", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "SimpleCallbackFunc", "kind": "variable", "doc": "Callback function perform any operations on \n (generation number, best scores report list, last population matrix, last scores vector)
\n\nNotes: generation number cannot be changed
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[int, typing.List[float], ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], NoneType]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackConditionFunc", "kind": "variable", "doc": "Function (middle callback data) -> (bool value means whether to call middle callback action)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackActionFunc", "kind": "variable", "doc": "Function which transforms and returns middle callback data or just uses it some way
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackFunc", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackFunc", "kind": "variable", "doc": "Function (input middle callback data) -> (output callback data, changes flag)\n where input and output data may be same \n and changes flag means whether the output data must be read back\n to the optimization process (to update by flag only one time -- for acceleration purposes)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], typing.Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]"}, "geneticalgorithm2.callbacks.middle": {"fullname": "geneticalgorithm2.callbacks.middle", "modulename": "geneticalgorithm2.callbacks.middle", "kind": "module", "doc": "\n"}, "geneticalgorithm2.callbacks.middle.Actions": {"fullname": "geneticalgorithm2.callbacks.middle.Actions", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions", "kind": "class", "doc": "Static class of built-in middle callback actions
\n"}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.Stop", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.Stop", "kind": "function", "doc": "stops optimization
\n", "signature": "(\treason_name: str = 'stopped by Stop callback') -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.ReduceMutationProb", "kind": "function", "doc": "reduces mutation prob by the coefficient
\n", "signature": "(\treduce_coef: float = 0.9) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.ChangeRandomCrossover", "kind": "function", "doc": "randomly changes crossover
\n", "signature": "(\tavailable_crossovers: collections.abc.Sequence[collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.ChangeRandomSelection", "kind": "function", "doc": "randomly changes selection function
\n", "signature": "(\tavailable_selections: collections.abc.Sequence[collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.ChangeRandomMutation", "kind": "function", "doc": "randomly changes mutation function
\n", "signature": "(\tavailable_mutations: Sequence[Union[Callable[[int, int, int], int], Callable[[float, float, float], float]]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.RemoveDuplicates", "kind": "function", "doc": "Removes duplicates from population
\n\nArguments:
\n\n\n- oppositor: oppositor from OppOpPopInit, optional\noppositor for applying after duplicates removing.\nNone (default) means to just use the random initializer from creator.
\n- creator: the function creates population samples, optional\nthe function creates population samples if oppositor is None. The default is None.
\n- converter: function converts (preprocesses) population samples in new format to compare (if needed)\nbefore duplicates will be searched
\n
\n", "signature": "(\toppositor: Union[Callable[[numpy.ndarray], numpy.ndarray], NoneType] = None,\tcreator: Union[Callable[[], numpy.ndarray], NoneType] = None,\tconverter: Union[collections.abc.Callable[numpy.ndarray, numpy.ndarray], NoneType] = None) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.CopyBest", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.CopyBest", "kind": "function", "doc": "Copies best population object values (from dimensions in by_indexes) to all population
\n", "signature": "(\tby_indexes: Sequence[int]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.PlotPopulationScores", "kind": "function", "doc": "plots population scores\nneeds 2 functions like data->str for title and file name
\n", "signature": "(\ttitle_pattern: Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], str] = <function Actions.<lambda>>,\tsave_as_name_pattern: Union[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], str], NoneType] = None) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions", "kind": "class", "doc": "Static class of built-in middle callback actions
\n"}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.EachGen", "kind": "function", "doc": "\n", "signature": "(\tgeneration_step: int = 10) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.Always", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.Always", "kind": "function", "doc": "makes action each generation
\n", "signature": "() -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.AfterStagnation", "kind": "function", "doc": "\n", "signature": "(\tstagnation_generations: int = 50) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.All", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.All", "kind": "function", "doc": "returns function which checks all conditions from conditions
\n", "signature": "(\tconditions: Sequence[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.Any", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.Any", "kind": "function", "doc": "returns function which checks for any conditions from conditions
\n", "signature": "(\tconditions: Sequence[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"fullname": "geneticalgorithm2.callbacks.middle.MiddleCallbacks", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "MiddleCallbacks", "kind": "class", "doc": "Static class for middle callbacks creation
\n"}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"fullname": "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "MiddleCallbacks.UniversalCallback", "kind": "function", "doc": "universal function which constructs middle callback from action and condition
\n\nArguments:
\n\n\n- action:
\n- condition:
\n- set_data_after_callback: whether to signal internal data update if action update the data
\n
\n\nReturns:
\n", "signature": "(\taction: Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData],\tcondition: Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool],\tset_data_after_callback: bool = True) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"fullname": "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "MiddleCallbacks.ReduceMutationGen", "kind": "function", "doc": "\n", "signature": "(\treduce_coef: float = 0.9,\tmin_mutation: float = 0.005,\treduce_each_generation: int = 50,\treload_each_generation: int = 500) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"fullname": "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "MiddleCallbacks.GeneDiversityStats", "kind": "function", "doc": "\n", "signature": "(\tstep_generations_for_plotting: int = 10) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.simple": {"fullname": "geneticalgorithm2.callbacks.simple", "modulename": "geneticalgorithm2.callbacks.simple", "kind": "module", "doc": "\n"}, "geneticalgorithm2.callbacks.simple.Callbacks": {"fullname": "geneticalgorithm2.callbacks.simple.Callbacks", "modulename": "geneticalgorithm2.callbacks.simple", "qualname": "Callbacks", "kind": "class", "doc": "Static class with several simple callback methods
\n"}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"fullname": "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback", "modulename": "geneticalgorithm2.callbacks.simple", "qualname": "Callbacks.NoneCallback", "kind": "function", "doc": "\n", "signature": "():", "funcdef": "def"}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"fullname": "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation", "modulename": "geneticalgorithm2.callbacks.simple", "qualname": "Callbacks.SavePopulation", "kind": "function", "doc": "saves population to disk periodically
\n", "signature": "(\tfolder: Union[str, os.PathLike],\tsave_gen_step: int = 50,\tfile_prefix: str = 'population') -> collections.abc.Callable[int, typing.List[float], numpy.ndarray, numpy.ndarray, NoneType]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"fullname": "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess", "modulename": "geneticalgorithm2.callbacks.simple", "qualname": "Callbacks.PlotOptimizationProcess", "kind": "function", "doc": "Saves optimization process plots to disk periodically
\n\nArguments:
\n\n\n- folder:
\n- save_gen_step:
\n- show:
\n- main_color:
\n- file_prefix:
\n
\n\nReturns:
\n", "signature": "(\tfolder: Union[str, os.PathLike],\tsave_gen_step: int = 50,\tshow: bool = False,\tmain_color: str = 'green',\tfile_prefix: str = 'report') -> collections.abc.Callable[int, typing.List[float], numpy.ndarray, numpy.ndarray, NoneType]:", "funcdef": "def"}, "geneticalgorithm2.crossovers": {"fullname": "geneticalgorithm2.crossovers", "modulename": "geneticalgorithm2.crossovers", "kind": "module", "doc": "\n"}, "geneticalgorithm2.crossovers.CrossoverFunc": {"fullname": "geneticalgorithm2.crossovers.CrossoverFunc", "modulename": "geneticalgorithm2.crossovers", "qualname": "CrossoverFunc", "kind": "variable", "doc": "Function (parent1, parent2) -> (child1, child2)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], typing.Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]"}, "geneticalgorithm2.crossovers.get_copies": {"fullname": "geneticalgorithm2.crossovers.get_copies", "modulename": "geneticalgorithm2.crossovers", "qualname": "get_copies", "kind": "function", "doc": "\n", "signature": "(\tx: numpy.ndarray,\ty: numpy.ndarray) -> tuple[numpy.ndarray, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover": {"fullname": "geneticalgorithm2.crossovers.Crossover", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover", "kind": "class", "doc": "Crossover functions static class
\n"}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"fullname": "geneticalgorithm2.crossovers.Crossover.crossovers_dict", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.crossovers_dict", "kind": "function", "doc": "\n", "signature": "() -> dict[str, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.one_point": {"fullname": "geneticalgorithm2.crossovers.Crossover.one_point", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.one_point", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.two_point": {"fullname": "geneticalgorithm2.crossovers.Crossover.two_point", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.two_point", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.uniform": {"fullname": "geneticalgorithm2.crossovers.Crossover.uniform", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.uniform", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.segment": {"fullname": "geneticalgorithm2.crossovers.Crossover.segment", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.segment", "kind": "function", "doc": "\n", "signature": "(\tprob: int = 0.6) -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"fullname": "geneticalgorithm2.crossovers.Crossover.shuffle", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.shuffle", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"fullname": "geneticalgorithm2.crossovers.Crossover.uniform_window", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.uniform_window", "kind": "function", "doc": "\n", "signature": "(\twindow: int = 7) -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"fullname": "geneticalgorithm2.crossovers.Crossover.arithmetic", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.arithmetic", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.mixed": {"fullname": "geneticalgorithm2.crossovers.Crossover.mixed", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.mixed", "kind": "function", "doc": "\n", "signature": "(\talpha: float = 0.5) -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.data_types": {"fullname": "geneticalgorithm2.data_types", "modulename": "geneticalgorithm2.data_types", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.algorithm_params": {"fullname": "geneticalgorithm2.data_types.algorithm_params", "modulename": "geneticalgorithm2.data_types.algorithm_params", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams", "kind": "class", "doc": "Base optimization parameters container
\n", "bases": "geneticalgorithm2.data_types.base.DictLikeGetSet"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.__init__", "kind": "function", "doc": "\n", "signature": "(\tmax_num_iteration: Union[int, NoneType] = None,\tmax_iteration_without_improv: Union[int, NoneType] = None,\tpopulation_size: int = 100,\tmutation_probability: float = 0.1,\tmutation_discrete_probability: Union[float, NoneType] = None,\tcrossover_probability: Union[float, NoneType] = None,\telit_ratio: float = 0.04,\tparents_portion: float = 0.3,\tcrossover_type: Union[str, Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]] = 'uniform',\tmutation_type: Union[str, Callable[[float, float, float], float]] = 'uniform_by_center',\tmutation_discrete_type: Union[str, Callable[[int, int, int], int]] = 'uniform_discrete',\tselection_type: Union[str, Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]] = 'roulette')"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.max_num_iteration", "kind": "variable", "doc": "max iterations count of the algorithm
\n", "annotation": ": Union[int, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.max_iteration_without_improv", "kind": "variable", "doc": "max iteration without progress
\n", "annotation": ": Union[int, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.population_size", "kind": "variable", "doc": "\n", "annotation": ": int", "default_value": "100"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.mutation_probability", "kind": "variable", "doc": "\n", "annotation": ": float", "default_value": "0.1"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.mutation_discrete_probability", "kind": "variable", "doc": "\n", "annotation": ": Union[float, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.crossover_probability", "kind": "variable", "doc": "\n", "annotation": ": Union[float, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.elit_ratio", "kind": "variable", "doc": "\n", "annotation": ": float", "default_value": "0.04"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.parents_portion", "kind": "variable", "doc": "\n", "annotation": ": float", "default_value": "0.3"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.crossover_type", "kind": "variable", "doc": "\n", "annotation": ": Union[str, Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]]", "default_value": "'uniform'"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.mutation_type", "kind": "variable", "doc": "mutation type for real variable
\n", "annotation": ": Union[str, Callable[[float, float, float], float]]", "default_value": "'uniform_by_center'"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.mutation_discrete_type", "kind": "variable", "doc": "mutation type for discrete variables
\n", "annotation": ": Union[str, Callable[[int, int, int], int]]", "default_value": "'uniform_discrete'"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.selection_type", "kind": "variable", "doc": "\n", "annotation": ": Union[str, Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]]", "default_value": "'roulette'"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.validate", "kind": "function", "doc": "\n", "signature": "(self) -> None:", "funcdef": "def"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.get_CMS_funcs", "kind": "function", "doc": "Returns:
\n\n\n gotten (crossover, mutation, discrete mutation, selection) as necessary functions
\n
\n", "signature": "(\tself) -> Tuple[Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]], Callable[[float, float, float], float], Callable[[int, int, int], int], Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]]:", "funcdef": "def"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.update", "kind": "function", "doc": "\n", "signature": "(self, dct: Dict[str, Any]):", "funcdef": "def"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.from_dict", "kind": "function", "doc": "\n", "signature": "(dct: Dict[str, Any]):", "funcdef": "def"}, "geneticalgorithm2.data_types.aliases": {"fullname": "geneticalgorithm2.data_types.aliases", "modulename": "geneticalgorithm2.data_types.aliases", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"fullname": "geneticalgorithm2.data_types.aliases.FunctionToMinimize", "modulename": "geneticalgorithm2.data_types.aliases", "qualname": "FunctionToMinimize", "kind": "variable", "doc": "usual (vector -> value) function to minimize
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray')], float]"}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"fullname": "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize", "modulename": "geneticalgorithm2.data_types.aliases", "qualname": "SetFunctionToMinimize", "kind": "variable", "doc": "(population -> scores) function to minimize
\n\nit is like a vectorized version of usual (vector -> value) function\n performing to all population samples in the one call
\n\nbut it can be written in more optimal way to speed up the calculations;\n also it can contain any logic due to samples relations and so on -- depends on the task
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray')], ForwardRef('np.ndarray')]"}, "geneticalgorithm2.data_types.base": {"fullname": "geneticalgorithm2.data_types.base", "modulename": "geneticalgorithm2.data_types.base", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"fullname": "geneticalgorithm2.data_types.base.DictLikeGetSet", "modulename": "geneticalgorithm2.data_types.base", "qualname": "DictLikeGetSet", "kind": "class", "doc": "\n"}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"fullname": "geneticalgorithm2.data_types.base.DictLikeGetSet.get", "modulename": "geneticalgorithm2.data_types.base", "qualname": "DictLikeGetSet.get", "kind": "function", "doc": "\n", "signature": "(self, item):", "funcdef": "def"}, "geneticalgorithm2.data_types.generation": {"fullname": "geneticalgorithm2.data_types.generation", "modulename": "geneticalgorithm2.data_types.generation", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"fullname": "geneticalgorithm2.data_types.generation.GenerationConvertible", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "GenerationConvertible", "kind": "variable", "doc": "The forms convertible to Generation
object:\n - Generation
object\n - path to saved generation\n - dict {'population': pop_matrix, 'scores': scores_vector}\n - wide population matrix\n - pair (pop_matrix, scores_vector)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Union[ForwardRef('Generation'), str, typing.Dict[typing.Literal['population', 'scores'], ForwardRef('np.ndarray')], ForwardRef('np.ndarray'), typing.Tuple[typing.Union[ForwardRef('np.ndarray'), NoneType], typing.Union[ForwardRef('np.ndarray'), NoneType]]]"}, "geneticalgorithm2.data_types.generation.Generation": {"fullname": "geneticalgorithm2.data_types.generation.Generation", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation", "kind": "class", "doc": "wrapper on generation object (pair of samples matrix and samples scores vector)
\n", "bases": "geneticalgorithm2.data_types.base.DictLikeGetSet"}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"fullname": "geneticalgorithm2.data_types.generation.Generation.__init__", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.__init__", "kind": "function", "doc": "\n", "signature": "(\tvariables: Union[numpy.ndarray, NoneType] = None,\tscores: Union[numpy.ndarray, NoneType] = None)"}, "geneticalgorithm2.data_types.generation.Generation.variables": {"fullname": "geneticalgorithm2.data_types.generation.Generation.variables", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.variables", "kind": "variable", "doc": "\n", "annotation": ": Union[numpy.ndarray, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.generation.Generation.scores": {"fullname": "geneticalgorithm2.data_types.generation.Generation.scores", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.scores", "kind": "variable", "doc": "\n", "annotation": ": Union[numpy.ndarray, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.generation.Generation.size": {"fullname": "geneticalgorithm2.data_types.generation.Generation.size", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.size", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"fullname": "geneticalgorithm2.data_types.generation.Generation.dim_size", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.dim_size", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"fullname": "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.as_wide_matrix", "kind": "function", "doc": "\n", "signature": "(self) -> numpy.ndarray:", "funcdef": "def"}, "geneticalgorithm2.data_types.generation.Generation.save": {"fullname": "geneticalgorithm2.data_types.generation.Generation.save", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.save", "kind": "function", "doc": "\n", "signature": "(self, path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.data_types.generation.Generation.load": {"fullname": "geneticalgorithm2.data_types.generation.Generation.load", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.load", "kind": "function", "doc": "\n", "signature": "(path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"fullname": "geneticalgorithm2.data_types.generation.Generation.from_object", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.from_object", "kind": "function", "doc": "class constructor
\n", "signature": "(\tdim: int,\tobj: Union[geneticalgorithm2.data_types.generation.Generation, str, dict[Literal['population', 'scores'], numpy.ndarray], numpy.ndarray, tuple[Union[numpy.ndarray, NoneType], Union[numpy.ndarray, NoneType]]]):", "funcdef": "def"}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"fullname": "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.from_pop_matrix", "kind": "function", "doc": "\n", "signature": "(pop: numpy.ndarray):", "funcdef": "def"}, "geneticalgorithm2.data_types.result": {"fullname": "geneticalgorithm2.data_types.result", "modulename": "geneticalgorithm2.data_types.result", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.result.GAResult": {"fullname": "geneticalgorithm2.data_types.result.GAResult", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult", "kind": "class", "doc": "\n", "bases": "geneticalgorithm2.data_types.base.DictLikeGetSet"}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"fullname": "geneticalgorithm2.data_types.result.GAResult.__init__", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.__init__", "kind": "function", "doc": "\n", "signature": "(last_generation: geneticalgorithm2.data_types.generation.Generation)"}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"fullname": "geneticalgorithm2.data_types.result.GAResult.last_generation", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.last_generation", "kind": "variable", "doc": "\n", "annotation": ": geneticalgorithm2.data_types.generation.Generation"}, "geneticalgorithm2.data_types.result.GAResult.variable": {"fullname": "geneticalgorithm2.data_types.result.GAResult.variable", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.variable", "kind": "variable", "doc": "\n", "annotation": ": 'np.ndarray'"}, "geneticalgorithm2.data_types.result.GAResult.score": {"fullname": "geneticalgorithm2.data_types.result.GAResult.score", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.score", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.data_types.result.GAResult.function": {"fullname": "geneticalgorithm2.data_types.result.GAResult.function", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.function", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"fullname": "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "VARIABLE_TYPE", "kind": "variable", "doc": "the variable type for a given or all dimension, determines the values discretion:\n real: double numbers\n int: integer number only\n bool: in the fact is integer with bounds [0, 1]
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Literal['int', 'real', 'bool']"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2", "kind": "class", "doc": "Genetic algorithm optimization process
\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.__init__", "kind": "function", "doc": "initializes the GA object and performs main checks
\n\nArguments:
\n\n\n- function: the given objective function to be minimized
\n- dimension: the number of decision variables, the population samples dimention
\n- variable_type: string means the variable type for all variables,\nfor mixed types use sequence of strings of type for each variable
\n- variable_boundaries: leave it None if variable_type is 'bool';\notherwise provide a sequence of tuples of length two as boundaries for each variable;\nthe length of the array must be equal dimension.\nFor example, ([0,100], [0,200]) determines\n lower boundary 0 and upper boundary 100 for first\n and upper boundary 200 for second variable\n and dimension must be 2.
\n- variable_type_mixed -- deprecated
\n- function_timeout: if the given function does not provide\noutput before function_timeout (unit is seconds) the algorithm raises error.\nFor example, when there is an infinite loop in the given function.\n
None
means disabling \n- algorithm_parameters: AlgorithmParams object or usual dictionary with algorithm parameter;\nit is not mandatory to provide all possible parameters
\n
\n\nNotes:
\n\n\n \n - This implementation minimizes the given objective function.\n For maximization u can multiply the function by -1 (for instance): the absolute\n value of the output would be the actual objective function
\n
\n
\n\nfor more details and examples of implementation please visit:\n https://github.com/PasaOpasen/geneticalgorithm2
\n", "signature": "(\tfunction: collections.abc.Callable[numpy.ndarray, float],\tdimension: int,\tvariable_type: Union[Literal['int', 'real', 'bool'], Sequence[Literal['int', 'real', 'bool']]] = 'bool',\tvariable_boundaries: Union[numpy.ndarray, Sequence[Tuple[float, float]], NoneType] = None,\tvariable_type_mixed=None,\tfunction_timeout: Union[float, NoneType] = None,\talgorithm_parameters: Union[geneticalgorithm2.data_types.algorithm_params.AlgorithmParams, Dict[str, Any]] = AlgorithmParams(max_num_iteration=None, max_iteration_without_improv=None, population_size=100, mutation_probability=0.1, mutation_discrete_probability=None, crossover_probability=None, elit_ratio=0.04, parents_portion=0.3, crossover_type='uniform', mutation_type='uniform_by_center', mutation_discrete_type='uniform_discrete', selection_type='roulette'))"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.default_params", "kind": "variable", "doc": "\n", "default_value": "AlgorithmParams(max_num_iteration=None, max_iteration_without_improv=None, population_size=100, mutation_probability=0.1, mutation_discrete_probability=None, crossover_probability=None, elit_ratio=0.04, parents_portion=0.3, crossover_type='uniform', mutation_type='uniform_by_center', mutation_discrete_type='uniform_discrete', selection_type='roulette')"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.PROGRESS_BAR_LEN", "kind": "variable", "doc": "max count of symbols in the progress bar
\n", "default_value": "20"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.output_dict", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.needs_mutation", "kind": "variable", "doc": "whether the mutation is required
\n", "annotation": ": bool"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.f", "kind": "variable", "doc": "\n", "annotation": ": collections.abc.Callable[numpy.ndarray, float]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.funtimeout", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.set_function", "kind": "variable", "doc": "\n", "annotation": ": Callable[[numpy.ndarray], numpy.ndarray]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.var_bounds", "kind": "variable", "doc": "\n", "annotation": ": List[Tuple[Union[int, float], Union[int, float]]]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.checked_reports", "kind": "variable", "doc": "\n", "annotation": ": list[tuple[str, collections.abc.Callable[numpy.ndarray, NoneType]]]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.population_size", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.progress_stream", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.param", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.dim", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.prob_mut", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.prob_mut_discrete", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.fill_children", "kind": "variable", "doc": "custom function which adds children for population POP \n where POP[:parents_count] are parents lines and next lines are for children
\n", "annotation": ": Union[collections.abc.Callable[numpy.ndarray, int, NoneType], NoneType]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.run", "kind": "function", "doc": "runs optimization process
\n\nArguments:
\n\n\n- no_plot: do not plot results using matplotlib by default
\n- disable_printing: do not print log info of optimization process
\n- progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
\n- disable_progress_bar:
\n- set_function : 2D-array -> 1D-array function,\nwhich applyes to matrix of population (size (samples, dimention))\n to estimate their values
\n- apply_function_to_parents: apply function to parents from previous generation (if it's needed)
\n- start_generation: Generation object or a dictionary with structure\n{'variables':2D-array of samples, 'scores': function values on samples}\nor path to .npz file (str) with saved generation; if 'scores' value is None the scores will be compute
\n- studEA: using stud EA strategy (crossover with best object always)
\n- mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
\n- init_creator: the function creates population samples.\nBy default -- random uniform for real variables and random uniform for int
\n- init_oppositors: the list of oppositors creates oppositions for base population. No by default
\n- duplicates_oppositor: oppositor for applying after duplicates removing.\nBy default -- using just random initializer from creator
\n- remove_duplicates_generation_step: step for removing duplicates (have a sense with discrete tasks).\nNo by default
\n- revolution_oppositor: oppositor for revolution time. No by default
\n- revolution_after_stagnation_step: create revolution after this generations of stagnation. No by default
\n- revolution_part: float, the part of generation to being oppose. By default is 0.3
\n- population_initializer: object for actions at population initialization step\nto create better start population. See doc
\n- stop_when_reached: stop searching after reaching this value (it can be potential minimum or something else)
\n- callbacks: sequence of callback functions with structure:\n(generation_number, report_list, last_population, last_scores) -> do some action
\n- middle_callbacks: sequence of functions made MiddleCallbacks class
\n- time_limit_secs: limit time of working (in seconds)
\n- save_last_generation_as: path to .npz file for saving last_generation as numpy dictionary like\n{'population': 2D-array, 'scores': 1D-array}, None if doesn't need to save in file
\n- seed: random seed (None if doesn't matter)
\n
\n", "signature": "(\tself,\tno_plot: bool = False,\tdisable_printing: bool = False,\tprogress_bar_stream: Union[str, NoneType] = 'stdout',\tdisable_progress_bar: bool = False,\tset_function: collections.abc.Callable[numpy.ndarray, numpy.ndarray] = None,\tapply_function_to_parents: bool = False,\tstart_generation: Union[geneticalgorithm2.data_types.generation.Generation, str, dict[Literal['population', 'scores'], numpy.ndarray], numpy.ndarray, tuple[Union[numpy.ndarray, NoneType], Union[numpy.ndarray, NoneType]]] = Generation(variables=None, scores=None),\tstudEA: bool = False,\tmutation_indexes: Union[Sequence[int], Set[int], NoneType] = None,\tinit_creator: Union[collections.abc.Callable[numpy.ndarray], NoneType] = None,\tinit_oppositors: Union[collections.abc.Sequence[collections.abc.Callable[numpy.ndarray, numpy.ndarray]], NoneType] = None,\tduplicates_oppositor: Union[collections.abc.Callable[numpy.ndarray, numpy.ndarray], NoneType] = None,\tremove_duplicates_generation_step: Union[int, NoneType] = None,\trevolution_oppositor: Union[collections.abc.Callable[numpy.ndarray, numpy.ndarray], NoneType] = None,\trevolution_after_stagnation_step: Union[int, NoneType] = None,\trevolution_part: float = 0.3,\tpopulation_initializer: tuple[int, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]] = (1, <function get_population_initializer.<locals>.process_population>),\tstop_when_reached: Union[float, NoneType] = None,\tcallbacks: Union[collections.abc.Sequence[collections.abc.Callable[int, List[float], numpy.ndarray, numpy.ndarray, NoneType]], NoneType] = None,\tmiddle_callbacks: Union[Sequence[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]], NoneType] = None,\ttime_limit_secs: Union[float, NoneType] = None,\tsave_last_generation_as: Union[str, NoneType] = None,\tseed: Union[int, NoneType] = None):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.plot_results", "kind": "function", "doc": "Simple plot of self.report (if not empty)
\n", "signature": "(\tself,\ttitle: str = 'Genetic Algorithm',\tsave_as: Union[str, NoneType] = None,\tdpi: int = 200,\tmain_color: str = 'blue'):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.plot_generation_scores", "kind": "function", "doc": "Plots barplot of scores of last population
\n", "signature": "(\tself,\ttitle: str = 'Last generation scores',\tsave_as: Union[str, NoneType] = None):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.mut", "kind": "function", "doc": "just mutation
\n", "signature": "(self, x: numpy.ndarray):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.mut_middle", "kind": "function", "doc": "mutation oriented on parents
\n", "signature": "(self, x: numpy.ndarray, p1: numpy.ndarray, p2: numpy.ndarray):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.default_set_function", "kind": "function", "doc": "simple function for creating set_function \nfunction_for_set just applies to each row of population
\n", "signature": "(function_for_set: collections.abc.Callable[numpy.ndarray, float]):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.vectorized_set_function", "kind": "function", "doc": "works like default, but faster for big populations and slower for little\nfunction_for_set just applyes to each row of population
\n", "signature": "(function_for_set: collections.abc.Callable[numpy.ndarray, float]):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.set_function_multiprocess", "kind": "function", "doc": "like function_for_set but uses joblib with n_jobs (-1 goes to count of available processors)
\n", "signature": "(\tfunction_for_set: collections.abc.Callable[numpy.ndarray, float],\tn_jobs: int = -1):", "funcdef": "def"}, "geneticalgorithm2.mutations": {"fullname": "geneticalgorithm2.mutations", "modulename": "geneticalgorithm2.mutations", "kind": "module", "doc": "\n"}, "geneticalgorithm2.mutations.MutationFloatFunc": {"fullname": "geneticalgorithm2.mutations.MutationFloatFunc", "modulename": "geneticalgorithm2.mutations", "qualname": "MutationFloatFunc", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[float, float, float], float]"}, "geneticalgorithm2.mutations.MutationIntFunc": {"fullname": "geneticalgorithm2.mutations.MutationIntFunc", "modulename": "geneticalgorithm2.mutations", "qualname": "MutationIntFunc", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[int, int, int], int]"}, "geneticalgorithm2.mutations.MutationFunc": {"fullname": "geneticalgorithm2.mutations.MutationFunc", "modulename": "geneticalgorithm2.mutations", "qualname": "MutationFunc", "kind": "variable", "doc": "Function (x, left, right) -> value
\n\nWhich mutates x to value according to bounds (left, right)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Union[typing.Callable[[int, int, int], int], typing.Callable[[float, float, float], float]]"}, "geneticalgorithm2.mutations.Mutations": {"fullname": "geneticalgorithm2.mutations.Mutations", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations", "kind": "class", "doc": "Mutations functions static class
\n"}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"fullname": "geneticalgorithm2.mutations.Mutations.mutations_dict", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.mutations_dict", "kind": "function", "doc": "\n", "signature": "() -> Dict[str, Callable[[float, float, float], float]]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"fullname": "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.mutations_discrete_dict", "kind": "function", "doc": "\n", "signature": "() -> Dict[str, Callable[[int, int, int], int]]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"fullname": "geneticalgorithm2.mutations.Mutations.uniform_by_x", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.uniform_by_x", "kind": "function", "doc": "\n", "signature": "() -> Callable[[float, float, float], float]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"fullname": "geneticalgorithm2.mutations.Mutations.uniform_by_center", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.uniform_by_center", "kind": "function", "doc": "\n", "signature": "() -> Callable[[float, float, float], float]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"fullname": "geneticalgorithm2.mutations.Mutations.gauss_by_x", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.gauss_by_x", "kind": "function", "doc": "gauss mutation with x as center and sd*length_of_zone as std
\n", "signature": "(sd: float = 0.3) -> Callable[[float, float, float], float]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"fullname": "geneticalgorithm2.mutations.Mutations.gauss_by_center", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.gauss_by_center", "kind": "function", "doc": "gauss mutation with (left+right)/2 as center and sd*length_of_zone as std
\n", "signature": "(sd: float = 0.3) -> Callable[[float, float, float], float]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"fullname": "geneticalgorithm2.mutations.Mutations.uniform_discrete", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.uniform_discrete", "kind": "function", "doc": "\n", "signature": "() -> Callable[[int, int, int], int]:", "funcdef": "def"}, "geneticalgorithm2.population_initializer": {"fullname": "geneticalgorithm2.population_initializer", "modulename": "geneticalgorithm2.population_initializer", "kind": "module", "doc": "\n"}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"fullname": "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE", "modulename": "geneticalgorithm2.population_initializer", "qualname": "LOCAL_OPTIMIZATION_STEP_CASE", "kind": "variable", "doc": "When the local optimization (candidates enhancing) must be performed:\n * 'never' -- don't do local optimization\n * 'before_select' -- before selection best N objects \n (example: do local optimization for 5N objects and select N best results)\n * 'after_select' -- do local optimization on best selected N objects
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Literal['before_select', 'after_select', 'never']"}, "geneticalgorithm2.population_initializer.get_population_initializer": {"fullname": "geneticalgorithm2.population_initializer.get_population_initializer", "modulename": "geneticalgorithm2.population_initializer", "qualname": "get_population_initializer", "kind": "function", "doc": "Arguments:
\n\n\n- select_best_of: determines population size to select 1/select_best_of best part of start population.\nFor example, for select_best_of = 4 and population_size = N there will be selected N best objects\n from 5N generated objects (if start_generation=None dictionary).\nIf start_generation is not None dictionary, there will be selected best (start_generation) / N objects
\n- local_optimization_step: when to perform local optimization
\n- local_optimizer: the local optimization function (object array, its score) -> (modified array, its score)
\n
\n\nReturns:
\n\n\n select_best_of, function which will perform the selection and local optimization
\n
\n", "signature": "(\tselect_best_of: int = 4,\tlocal_optimization_step: Literal['before_select', 'after_select', 'never'] = 'never',\tlocal_optimizer: Union[collections.abc.Callable[numpy.ndarray, float, tuple[numpy.ndarray, float]], NoneType] = None) -> tuple[int, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]]:", "funcdef": "def"}, "geneticalgorithm2.selections": {"fullname": "geneticalgorithm2.selections", "modulename": "geneticalgorithm2.selections", "kind": "module", "doc": "\n"}, "geneticalgorithm2.selections.SelectionFunc": {"fullname": "geneticalgorithm2.selections.SelectionFunc", "modulename": "geneticalgorithm2.selections", "qualname": "SelectionFunc", "kind": "variable", "doc": "Function (scores, count to select) -> indexes of selected
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]"}, "geneticalgorithm2.selections.inverse_scores": {"fullname": "geneticalgorithm2.selections.inverse_scores", "modulename": "geneticalgorithm2.selections", "qualname": "inverse_scores", "kind": "function", "doc": "inverses scores (min val goes to max)
\n", "signature": "(scores: numpy.ndarray) -> numpy.ndarray:", "funcdef": "def"}, "geneticalgorithm2.selections.roulette": {"fullname": "geneticalgorithm2.selections.roulette", "modulename": "geneticalgorithm2.selections", "qualname": "roulette", "kind": "function", "doc": "simplest roulette selector for which the highest score means more preferred
\n", "signature": "(scores: numpy.ndarray, parents_count: int) -> numpy.ndarray:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection": {"fullname": "geneticalgorithm2.selections.Selection", "modulename": "geneticalgorithm2.selections", "qualname": "Selection", "kind": "class", "doc": "Selections functions static class
\n"}, "geneticalgorithm2.selections.Selection.selections_dict": {"fullname": "geneticalgorithm2.selections.Selection.selections_dict", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.selections_dict", "kind": "function", "doc": "\n", "signature": "() -> dict[str, collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.fully_random": {"fullname": "geneticalgorithm2.selections.Selection.fully_random", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.fully_random", "kind": "function", "doc": "returns the selector of fully random parents (for tests purposes)
\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.roulette": {"fullname": "geneticalgorithm2.selections.Selection.roulette", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.roulette", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.stochastic": {"fullname": "geneticalgorithm2.selections.Selection.stochastic", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.stochastic", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"fullname": "geneticalgorithm2.selections.Selection.sigma_scaling", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.sigma_scaling", "kind": "function", "doc": "\n", "signature": "(\tepsilon: float = 0.01,\tis_noisy: bool = False) -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.ranking": {"fullname": "geneticalgorithm2.selections.Selection.ranking", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.ranking", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.linear_ranking": {"fullname": "geneticalgorithm2.selections.Selection.linear_ranking", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.linear_ranking", "kind": "function", "doc": "\n", "signature": "(\tselection_pressure: float = 1.5) -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.tournament": {"fullname": "geneticalgorithm2.selections.Selection.tournament", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.tournament", "kind": "function", "doc": "\n", "signature": "(\ttau: int = 2) -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.utils": {"fullname": "geneticalgorithm2.utils", "modulename": "geneticalgorithm2.utils", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.aliases": {"fullname": "geneticalgorithm2.utils.aliases", "modulename": "geneticalgorithm2.utils.aliases", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.aliases.Number": {"fullname": "geneticalgorithm2.utils.aliases.Number", "modulename": "geneticalgorithm2.utils.aliases", "qualname": "Number", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Union[int, float]"}, "geneticalgorithm2.utils.aliases.array1D": {"fullname": "geneticalgorithm2.utils.aliases.array1D", "modulename": "geneticalgorithm2.utils.aliases", "qualname": "array1D", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "'np.ndarray'"}, "geneticalgorithm2.utils.aliases.array2D": {"fullname": "geneticalgorithm2.utils.aliases.array2D", "modulename": "geneticalgorithm2.utils.aliases", "qualname": "array2D", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "'np.ndarray'"}, "geneticalgorithm2.utils.aliases.PathLike": {"fullname": "geneticalgorithm2.utils.aliases.PathLike", "modulename": "geneticalgorithm2.utils.aliases", "qualname": "PathLike", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Union[str, os.PathLike]"}, "geneticalgorithm2.utils.cache": {"fullname": "geneticalgorithm2.utils.cache", "modulename": "geneticalgorithm2.utils.cache", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.cache.np_lru_cache": {"fullname": "geneticalgorithm2.utils.cache.np_lru_cache", "modulename": "geneticalgorithm2.utils.cache", "qualname": "np_lru_cache", "kind": "function", "doc": "LRU cache implementation for functions whose FIRST parameter is a numpy array\n forked from: https://gist.github.com/Susensio/61f4fee01150caaac1e10fc5f005eb75
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "geneticalgorithm2.utils.files": {"fullname": "geneticalgorithm2.utils.files", "modulename": "geneticalgorithm2.utils.files", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.files.mkdir_of_file": {"fullname": "geneticalgorithm2.utils.files.mkdir_of_file", "modulename": "geneticalgorithm2.utils.files", "qualname": "mkdir_of_file", "kind": "function", "doc": "\u0434\u043b\u044f \u044d\u0442\u043e\u0433\u043e \u0444\u0430\u0439\u043b\u0430 \u0441\u043e\u0437\u0434\u0430\u0451\u0442 \u043f\u0430\u043f\u043a\u0443, \u0432 \u043a\u043e\u0442\u043e\u0440\u043e\u0439 \u043e\u043d \u0434\u043e\u043b\u0436\u0435\u043d \u043b\u0435\u0436\u0430\u0442\u044c
\n", "signature": "(file_path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.utils.files.mkdir": {"fullname": "geneticalgorithm2.utils.files.mkdir", "modulename": "geneticalgorithm2.utils.files", "qualname": "mkdir", "kind": "function", "doc": "mkdir with parents
\n", "signature": "(path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.utils.files.touch": {"fullname": "geneticalgorithm2.utils.files.touch", "modulename": "geneticalgorithm2.utils.files", "qualname": "touch", "kind": "function", "doc": "makes empty file, makes directories for this file automatically
\n", "signature": "(path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs": {"fullname": "geneticalgorithm2.utils.funcs", "modulename": "geneticalgorithm2.utils.funcs", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.funcs.fast_min": {"fullname": "geneticalgorithm2.utils.funcs.fast_min", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "fast_min", "kind": "function", "doc": "1.5 times faster than row min(a, b)
\n", "signature": "(a, b):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.fast_max": {"fullname": "geneticalgorithm2.utils.funcs.fast_max", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "fast_max", "kind": "function", "doc": "\n", "signature": "(a, b):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.can_be_prob": {"fullname": "geneticalgorithm2.utils.funcs.can_be_prob", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "can_be_prob", "kind": "function", "doc": "\n", "signature": "(value: float) -> bool:", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"fullname": "geneticalgorithm2.utils.funcs.is_current_gen_number", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "is_current_gen_number", "kind": "function", "doc": "\n", "signature": "(number: Union[int, NoneType]):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.is_numpy": {"fullname": "geneticalgorithm2.utils.funcs.is_numpy", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "is_numpy", "kind": "function", "doc": "\n", "signature": "(arg: Any):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.split_matrix": {"fullname": "geneticalgorithm2.utils.funcs.split_matrix", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "split_matrix", "kind": "function", "doc": "splits wide pop matrix to variables and scores
\n", "signature": "(mat: numpy.ndarray) -> tuple[numpy.ndarray, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"fullname": "geneticalgorithm2.utils.funcs.union_to_matrix", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "union_to_matrix", "kind": "function", "doc": "union variables and scores to wide pop matrix
\n", "signature": "(variables_2D: numpy.ndarray, scores_1D: numpy.ndarray) -> numpy.ndarray:", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"fullname": "geneticalgorithm2.utils.funcs.random_indexes_pair", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "random_indexes_pair", "kind": "function", "doc": "works 3 times faster than random.sample(range(seq_len), 2)
\n", "signature": "(seq_len: int) -> Tuple[int, int]:", "funcdef": "def"}, "geneticalgorithm2.utils.plotting": {"fullname": "geneticalgorithm2.utils.plotting", "modulename": "geneticalgorithm2.utils.plotting", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"fullname": "geneticalgorithm2.utils.plotting.plot_several_lines", "modulename": "geneticalgorithm2.utils.plotting", "qualname": "plot_several_lines", "kind": "function", "doc": "\n", "signature": "(\tlines: Sequence[Sequence[float]],\tcolors: Sequence[str],\tlabels: Union[Sequence[str], NoneType] = None,\tlinewidths: Union[Sequence[int], NoneType] = None,\ttitle: str = '',\txlabel: str = 'Generation',\tylabel: str = 'Minimized function',\tsave_as: Union[str, os.PathLike, NoneType] = None,\tdpi: int = 200):", "funcdef": "def"}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"fullname": "geneticalgorithm2.utils.plotting.plot_pop_scores", "modulename": "geneticalgorithm2.utils.plotting", "qualname": "plot_pop_scores", "kind": "function", "doc": "plots scores (numeric values) as sorted bars
\n", "signature": "(\tscores: Sequence[float],\ttitle: str = 'Population scores',\tsave_as: Union[str, NoneType] = None):", "funcdef": "def"}}, "docInfo": {"geneticalgorithm2": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 43}, "geneticalgorithm2.geneticalgorithm2": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.Population_initializer": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 230, "bases": 0, "doc": 124}, "geneticalgorithm2.callbacks": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 8}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 408, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"qualname": 4, "fullname": 7, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"qualname": 2, "fullname": 5, "annotation": 23, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"qualname": 2, "fullname": 5, "annotation": 13, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"qualname": 3, "fullname": 6, "annotation": 13, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 16, "signature": 0, "bases": 0, "doc": 29}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 6, "signature": 0, "bases": 0, "doc": 17}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 9, "signature": 0, "bases": 0, "doc": 16}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 11, "signature": 0, "bases": 0, "doc": 48}, "geneticalgorithm2.callbacks.middle": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.middle.Actions": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 4}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 71, "bases": 0, "doc": 8}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 5}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 115, "bases": 0, "doc": 6}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 123, "bases": 0, "doc": 6}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 202, "bases": 0, "doc": 87}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 69, "bases": 0, "doc": 15}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 173, "bases": 0, "doc": 16}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 6}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 10}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 11}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 173, "bases": 0, "doc": 53}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 141, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.simple": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.simple.Callbacks": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 139, "bases": 0, "doc": 7}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 180, "bases": 0, "doc": 53}, "geneticalgorithm2.crossovers": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.CrossoverFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 24, "signature": 0, "bases": 0, "doc": 9}, "geneticalgorithm2.crossovers.get_copies": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.one_point": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.two_point": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.uniform": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.segment": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.mixed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 6}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 504, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"qualname": 4, "fullname": 9, "annotation": 3, "default_value": 1, "signature": 0, "bases": 0, "doc": 8}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"qualname": 5, "fullname": 10, "annotation": 3, "default_value": 1, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"qualname": 4, "fullname": 9, "annotation": 3, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"qualname": 3, "fullname": 8, "annotation": 3, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"qualname": 3, "fullname": 8, "annotation": 24, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"qualname": 3, "fullname": 8, "annotation": 6, "default_value": 7, "signature": 0, "bases": 0, "doc": 7}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"qualname": 4, "fullname": 9, "annotation": 6, "default_value": 6, "signature": 0, "bases": 0, "doc": 7}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"qualname": 3, "fullname": 8, "annotation": 14, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 188, "bases": 0, "doc": 18}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.aliases": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"qualname": 1, "fullname": 5, "annotation": 4, "default_value": 8, "signature": 0, "bases": 0, "doc": 9}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"qualname": 1, "fullname": 5, "annotation": 4, "default_value": 13, "signature": 0, "bases": 0, "doc": 65}, "geneticalgorithm2.data_types.base": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"qualname": 1, "fullname": 5, "annotation": 4, "default_value": 42, "signature": 0, "bases": 0, "doc": 37}, "geneticalgorithm2.data_types.generation.Generation": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 15}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 74, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.variables": {"qualname": 2, "fullname": 6, "annotation": 4, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.scores": {"qualname": 2, "fullname": 6, "annotation": 4, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.size": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.save": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.load": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 152, "bases": 0, "doc": 4}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"qualname": 3, "fullname": 7, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.variable": {"qualname": 2, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.score": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.function": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 12, "signature": 0, "bases": 0, "doc": 32}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 479, "bases": 0, "doc": 264}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 57, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 10}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 7}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"qualname": 3, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"qualname": 3, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"qualname": 3, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"qualname": 3, "fullname": 5, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 22}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 1174, "bases": 0, "doc": 461}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 107, "bases": 0, "doc": 11}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 9}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 4}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 6}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 18}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 24}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 20}, "geneticalgorithm2.mutations": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.MutationFloatFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.MutationIntFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.MutationFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 11, "signature": 0, "bases": 0, "doc": 21}, "geneticalgorithm2.mutations.Mutations": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 14}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 15}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "geneticalgorithm2.population_initializer": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 14, "signature": 0, "bases": 0, "doc": 49}, "geneticalgorithm2.population_initializer.get_population_initializer": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 230, "bases": 0, "doc": 124}, "geneticalgorithm2.selections": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.SelectionFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 13, "signature": 0, "bases": 0, "doc": 11}, "geneticalgorithm2.selections.inverse_scores": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 10}, "geneticalgorithm2.selections.roulette": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 13}, "geneticalgorithm2.selections.Selection": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.selections.Selection.selections_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.fully_random": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 13}, "geneticalgorithm2.selections.Selection.roulette": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.stochastic": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.ranking": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.linear_ranking": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.tournament": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 65, "bases": 0, "doc": 3}, "geneticalgorithm2.utils": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases.Number": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases.array1D": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases.array2D": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases.PathLike": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.cache": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.cache.np_lru_cache": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 21}, "geneticalgorithm2.utils.files": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.files.mkdir_of_file": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 12}, "geneticalgorithm2.utils.files.mkdir": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 5}, "geneticalgorithm2.utils.files.touch": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 11}, "geneticalgorithm2.utils.funcs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.fast_min": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 12}, "geneticalgorithm2.utils.funcs.fast_max": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.can_be_prob": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.is_numpy": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.split_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 10}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 10}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 16}, "geneticalgorithm2.utils.plotting": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 238, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 9}}, "length": 189, "save": true}, "index": {"qualname": {"root": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 5, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 27}, "docs": {}, "df": 0}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 15, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 6}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}}, "df": 3}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 2}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}}, "df": 17}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 9, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 8}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 4}}}}}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 11, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 1}}, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "u": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 3}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}}, "df": 13, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 4}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 7}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "m": {"docs": {"geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}, "e": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}}, "df": 18}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"1": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.aliases.array1D": {"tf": 1}}, "df": 1}}, "2": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.aliases.array2D": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}}}}, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}}, "df": 1}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 4}, "e": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}, "x": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}}, "df": 2}}}, "fullname": {"root": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 5, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.data": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.aliases": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.base": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.data_types.generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.data_types.result": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}, "geneticalgorithm2.population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.selections": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}, "geneticalgorithm2.utils": {"tf": 1}, "geneticalgorithm2.utils.aliases": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}, "geneticalgorithm2.utils.cache": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}, "geneticalgorithm2.utils.files": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.funcs": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}, "geneticalgorithm2.utils.plotting": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 189}, "docs": {}, "df": 0}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.data_types.generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 17, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 6}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}}, "df": 3}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 20}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.utils.plotting": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 2}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.data": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.4142135623730951}}, "df": 48}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.cache": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1.4142135623730951}}, "df": 2}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 3}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}}, "df": 13, "s": {"docs": {"geneticalgorithm2.crossovers": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}}, "df": 13}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.aliases": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.base": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.data_types.generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.data_types.result": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 68}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 7}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "m": {"docs": {"geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 21, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}}, "df": 17}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 9, "s": {"docs": {"geneticalgorithm2.mutations": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.mutations.Mutations": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1.4142135623730951}}, "df": 12}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 4}}}}}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.result": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 7, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 5, "s": {"docs": {"geneticalgorithm2.data_types": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.aliases": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.base": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.data_types.generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.data_types.result": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 46}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 11, "s": {"docs": {"geneticalgorithm2.selections": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 13}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 1}}, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "u": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.utils.funcs": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 10}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}, "e": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.utils.files": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}}, "df": 19, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.aliases": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.utils.aliases": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 8}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"1": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.aliases.array1D": {"tf": 1}}, "df": 1}}, "2": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.aliases.array2D": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}}}}, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils": {"tf": 1}, "geneticalgorithm2.utils.aliases": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}, "geneticalgorithm2.utils.cache": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}, "geneticalgorithm2.utils.files": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.funcs": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}, "geneticalgorithm2.utils.plotting": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 24}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}}, "df": 1}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.base": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}}, "df": 3}}, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 4}, "e": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}, "x": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}}, "df": 2}}}, "annotation": {"root": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 61, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 19}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 19}}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 19}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 12}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 12}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1.4142135623730951}}, "df": 13}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}}, "df": 5}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 2}}}}}}}}}}}, "x": {"2": {"7": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 2.8284271247461903}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 2}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1.4142135623730951}}, "df": 6}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 3}}}}}, "default_value": {"root": {"0": {"4": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}}, "df": 4}, "1": {"0": {"0": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "2": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1.4142135623730951}}, "df": 16, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 3}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 4}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 2}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "x": {"2": {"7": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 2}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 2}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 3.7416573867739413}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 2.8284271247461903}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 2.449489742783178}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 2}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1.4142135623730951}}, "df": 16}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 16}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 2}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 5}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 2}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 2}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}}, "df": 8}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 2}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 2}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 2}}, "df": 7, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 2}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.aliases.Number": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}, "signature": {"root": {"0": {"0": {"5": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}, "4": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 10}, "1": {"0": {"0": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 5, "d": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}, "2": {"0": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 1, "d": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}, "3": {"9": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.8284271247461903}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 4}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 4.47213595499958}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 3.4641016151377544}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 4.69041575982343}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.8284271247461903}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 2.449489742783178}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1.4142135623730951}}, "df": 15}, "docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 5}, "4": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}, "5": {"0": {"0": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}, "docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 4}, "docs": {"geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 2}, "6": {"docs": {"geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}}, "df": 1}, "7": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}}, "df": 1}, "9": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.Population_initializer": {"tf": 13.341664064126334}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 17.52141546793523}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 7.681145747868608}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 7.54983443527075}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 10.44030650891055}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 9.643650760992955}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 10}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 12.884098726725126}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 7.483314773547883}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 11.661903789690601}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 6.708203932499369}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 5.5677643628300215}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 6.708203932499369}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 8}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 8}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 11.789826122551595}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 10.488088481701515}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 8.06225774829855}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 2.6457513110645907}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 10.535653752852738}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 11.958260743101398}, "geneticalgorithm2.crossovers.get_copies": {"tf": 7.211102550927978}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 8}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 8.366600265340756}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 8.366600265340756}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 8.366600265340756}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 19.519221295943137}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 3.4641016151377544}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 11.916375287812984}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 5.291502622129181}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 4.898979485566356}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 3.7416573867739413}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 7.874007874011811}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 4}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 5.656854249492381}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 5.291502622129181}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 11}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 4.242640687119285}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 4.898979485566356}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 18.81488772222678}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 30.463092423455635}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 9.219544457292887}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 7.280109889280518}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 4.69041575982343}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 6.782329983125268}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 6}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 6}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 7.416198487095663}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 6.082762530298219}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 6.082762530298219}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 5.385164807134504}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 5.385164807134504}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 6.48074069840786}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 6.48074069840786}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 5.385164807134504}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 13.341664064126334}, "geneticalgorithm2.selections.inverse_scores": {"tf": 4.898979485566356}, "geneticalgorithm2.selections.roulette": {"tf": 5.656854249492381}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 6.928203230275509}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 6.324555320336759}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 6.324555320336759}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 6.324555320336759}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 8.306623862918075}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 6.324555320336759}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 7.3484692283495345}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 7.3484692283495345}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 4.242640687119285}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 5.291502622129181}, "geneticalgorithm2.utils.files.mkdir": {"tf": 5.291502622129181}, "geneticalgorithm2.utils.files.touch": {"tf": 5.291502622129181}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 3.7416573867739413}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 3.7416573867739413}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 4}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 4.898979485566356}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 3.7416573867739413}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 6.164414002968976}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 6}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 5.0990195135927845}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 13.892443989449804}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 7.874007874011811}}, "df": 85, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 11}}, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 6}, "q": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 2.23606797749979}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 10}}}}}}, "c": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 7}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 2.449489742783178}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1.4142135623730951}}, "df": 24, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 8}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1.4142135623730951}}, "df": 8}}}}}, "d": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}, "b": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 13}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 8}, "b": {"docs": {}, "df": 0, "j": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.23606797749979}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.6457513110645907}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 2}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.4142135623730951}}, "df": 35}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "m": {"docs": {"geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 5}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}}}, "b": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 29}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 6}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.449489742783178}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.get_copies": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 2}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 2}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4.358898943540674}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.449489742783178}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1.7320508075688772}}, "df": 40}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.449489742783178}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.get_copies": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.449489742783178}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.449489742783178}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 2}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4.358898943540674}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.449489742783178}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1.7320508075688772}}, "df": 43}}}}}}, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.6457513110645907}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 13, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4.123105625617661}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 17}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.449489742783178}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.449489742783178}}, "df": 3}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4.123105625617661}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 23}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 29}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.8284271247461903}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 52}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}}, "df": 17}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 3}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 2}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 2}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 2}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 2}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 2.23606797749979}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 2.23606797749979}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 26}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 4, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.449489742783178}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.449489742783178}}, "df": 3}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 8}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 24}}}}, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.449489742783178}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {"geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 8, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 21}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 2.449489742783178}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 21}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}}, "df": 9}}, "m": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 5, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 2}}, "t": {"docs": {"geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 17}}}}}}}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "p": {"1": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 1}, "2": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {"geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 8}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 6}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}}}}}}, "doc": {"root": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}, "1": {"0": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}, "2": {"0": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 4, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 1}}, "3": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}, "4": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}, "5": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 1, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 3}}, "8": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}, "docs": {"geneticalgorithm2": {"tf": 3.3166247903554}, "geneticalgorithm2.geneticalgorithm2": {"tf": 1.7320508075688772}, "geneticalgorithm2.Population_initializer": {"tf": 5.385164807134504}, "geneticalgorithm2.callbacks": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 2}, "geneticalgorithm2.callbacks.middle": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 4.69041575982343}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 4.898979485566356}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.simple": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 5.916079783099616}, "geneticalgorithm2.crossovers": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 2}, "geneticalgorithm2.crossovers.get_copies": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.aliases": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 3}, "geneticalgorithm2.data_types.base": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 3.1622776601683795}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 7.3484692283495345}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 10.723805294763608}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 2.449489742783178}, "geneticalgorithm2.mutations.Mutations": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 2.23606797749979}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 5.385164807134504}, "geneticalgorithm2.selections": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.cache": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 2}, "geneticalgorithm2.utils.files": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 3.4641016151377544}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.files.touch": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 2.23606797749979}, "geneticalgorithm2.utils.plotting": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1.4142135623730951}}, "df": 189, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 7, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 2}}}, "a": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "l": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2, "d": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.23606797749979}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 17}, "y": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 7}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 6}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 4}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.8284271247461903}}, "df": 3, "s": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 6}}}}}}}, "l": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 3.3166247903554}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.8284271247461903}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 22, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}, "s": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 9}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 23, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 7}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.files.touch": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 3}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 3}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"1": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}, "2": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.8284271247461903}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 15, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}}}}, "[": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 10, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}, "f": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 7}, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 9}, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 2}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.Population_initializer": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3.1622776601683795}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.23606797749979}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 20}, "r": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}}, "df": 5, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 8, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 3}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2}}, "df": 9}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}}, "df": 2, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 2}}, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "o": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 5, "s": {"docs": {"geneticalgorithm2.selections.Selection": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 5}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 3}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2}}, "df": 3}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}}, "df": 7}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 3, "s": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 12}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}}, "df": 5}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}, "d": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 4}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 10}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.generation.Generation": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": null}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"6": {"1": {"docs": {}, "df": 0, "f": {"4": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"0": {"1": {"1": {"5": {"0": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"1": {"docs": {}, "df": 0, "e": {"1": {"0": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"5": {"docs": {}, "df": 0, "f": {"0": {"0": {"5": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"7": {"5": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 9, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 3, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"1": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}, "2": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}}, "df": 9}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 9, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 6}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}, "x": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 5}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 11, "s": {"docs": {"geneticalgorithm2.mutations.Mutations": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 9}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}, "l": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 3}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}}, "df": 2, "c": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.7320508075688772}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}}, "df": 2}}}}}}}}, "e": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "b": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 1, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.6457513110645907}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.6457513110645907}}, "df": 6}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.4142135623730951}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 2, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3}}, "df": 5}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 2, "o": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 2}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3.1622776601683795}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 22}, "h": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 3.872983346207417}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 17, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 4, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 5}}, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "z": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.23606797749979}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.23606797749979}}, "df": 3}}}, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 5}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}}, "df": 1, "+": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}}, "p": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.4142135623730951}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}}, "df": 2}, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true};
+ /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"geneticalgorithm2": {"fullname": "geneticalgorithm2", "modulename": "geneticalgorithm2", "kind": "module", "doc": "Genetic Algorithm (Elitist version) for Python3.8+
\n\nAn implementation of elitist genetic algorithm for solving problems with\ncontinuous, integers, or mixed variables.
\n\nrepo path: https://github.com/PasaOpasen/geneticalgorithm2\ncode docs path: https://pasaopasen.github.io/geneticalgorithm2/
\n"}, "geneticalgorithm2.geneticalgorithm2": {"fullname": "geneticalgorithm2.geneticalgorithm2", "modulename": "geneticalgorithm2.geneticalgorithm2", "kind": "module", "doc": "\n"}, "geneticalgorithm2.Population_initializer": {"fullname": "geneticalgorithm2.Population_initializer", "modulename": "geneticalgorithm2", "qualname": "Population_initializer", "kind": "function", "doc": "Arguments:
\n\n\n- select_best_of: determines population size to select 1/select_best_of best part of start population.\nFor example, for select_best_of = 4 and population_size = N there will be selected N best objects\n from 5N generated objects (if start_generation=None dictionary).\nIf start_generation is not None dictionary, there will be selected best (start_generation) / N objects
\n- local_optimization_step: when to perform local optimization
\n- local_optimizer: the local optimization function (object array, its score) -> (modified array, its score)
\n
\n\nReturns:
\n\n\n select_best_of, population modifier
\n
\n", "signature": "(\tselect_best_of: int = 4,\tlocal_optimization_step: Literal['before_select', 'after_select', 'never'] = 'never',\tlocal_optimizer: Union[collections.abc.Callable[numpy.ndarray, float, tuple[numpy.ndarray, float]], NoneType] = None) -> tuple[int, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]]:", "funcdef": "def"}, "geneticalgorithm2.callbacks": {"fullname": "geneticalgorithm2.callbacks", "modulename": "geneticalgorithm2.callbacks", "kind": "module", "doc": "\n"}, "geneticalgorithm2.callbacks.data": {"fullname": "geneticalgorithm2.callbacks.data", "modulename": "geneticalgorithm2.callbacks.data", "kind": "module", "doc": "\n"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData", "kind": "class", "doc": "data object using in middle callbacks
\n", "bases": "geneticalgorithm2.data_types.base.DictLikeGetSet"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.__init__", "kind": "function", "doc": "\n", "signature": "(\treason_to_stop: Union[str, NoneType],\tlast_generation: geneticalgorithm2.data_types.generation.Generation,\tcurrent_generation: int,\treport_list: List[float],\tmutation_prob: float,\tmutation_discrete_prob: float,\tmutation: Callable[[float, float, float], float],\tmutation_discrete: Callable[[int, int, int], int],\tcrossover: Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]],\tselection: Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')],\tcurrent_stagnation: int,\tmax_stagnation: int,\tparents_portion: float,\telit_ratio: float,\tset_function: Callable[[ForwardRef('np.ndarray')], ForwardRef('np.ndarray')])"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.reason_to_stop", "kind": "variable", "doc": "\n", "annotation": ": Union[str, NoneType]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.last_generation", "kind": "variable", "doc": "\n", "annotation": ": geneticalgorithm2.data_types.generation.Generation"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.current_generation", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.report_list", "kind": "variable", "doc": "\n", "annotation": ": List[float]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.mutation_prob", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.mutation_discrete_prob", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.mutation", "kind": "variable", "doc": "\n", "annotation": ": Callable[[float, float, float], float]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.mutation_discrete", "kind": "variable", "doc": "\n", "annotation": ": Callable[[int, int, int], int]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.crossover", "kind": "variable", "doc": "\n", "annotation": ": Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.selection", "kind": "variable", "doc": "\n", "annotation": ": Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.current_stagnation", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.max_stagnation", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.parents_portion", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.elit_ratio", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackData.set_function", "kind": "variable", "doc": "\n", "annotation": ": Callable[[ForwardRef('np.ndarray')], ForwardRef('np.ndarray')]"}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"fullname": "geneticalgorithm2.callbacks.data.SimpleCallbackFunc", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "SimpleCallbackFunc", "kind": "variable", "doc": "Callback function perform any operations on \n (generation number, best scores report list, last population matrix, last scores vector)
\n\nNotes: generation number cannot be changed
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[int, typing.List[float], ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], NoneType]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackConditionFunc", "kind": "variable", "doc": "Function (middle callback data) -> (bool value means whether to call middle callback action)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackActionFunc", "kind": "variable", "doc": "Function which transforms and returns middle callback data or just uses it some way
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]"}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"fullname": "geneticalgorithm2.callbacks.data.MiddleCallbackFunc", "modulename": "geneticalgorithm2.callbacks.data", "qualname": "MiddleCallbackFunc", "kind": "variable", "doc": "Function (input middle callback data) -> (output callback data, changes flag)\n where input and output data may be same \n and changes flag means whether the output data must be read back\n to the optimization process (to update by flag only one time -- for acceleration purposes)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], typing.Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]"}, "geneticalgorithm2.callbacks.middle": {"fullname": "geneticalgorithm2.callbacks.middle", "modulename": "geneticalgorithm2.callbacks.middle", "kind": "module", "doc": "\n"}, "geneticalgorithm2.callbacks.middle.Actions": {"fullname": "geneticalgorithm2.callbacks.middle.Actions", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions", "kind": "class", "doc": "Static class of built-in middle callback actions
\n"}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.Stop", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.Stop", "kind": "function", "doc": "stops optimization
\n", "signature": "(\treason_name: str = 'stopped by Stop callback') -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.ReduceMutationProb", "kind": "function", "doc": "reduces mutation prob by the coefficient
\n", "signature": "(\treduce_coef: float = 0.9) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.ChangeRandomCrossover", "kind": "function", "doc": "randomly changes crossover
\n", "signature": "(\tavailable_crossovers: collections.abc.Sequence[collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.ChangeRandomSelection", "kind": "function", "doc": "randomly changes selection function
\n", "signature": "(\tavailable_selections: collections.abc.Sequence[collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.ChangeRandomMutation", "kind": "function", "doc": "randomly changes mutation function
\n", "signature": "(\tavailable_mutations: Sequence[Union[Callable[[int, int, int], int], Callable[[float, float, float], float]]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.RemoveDuplicates", "kind": "function", "doc": "Removes duplicates from population
\n\nArguments:
\n\n\n- oppositor: oppositor from OppOpPopInit, optional\noppositor for applying after duplicates removing.\nNone (default) means to just use the random initializer from creator.
\n- creator: the function creates population samples, optional\nthe function creates population samples if oppositor is None. The default is None.
\n- converter: function converts (preprocesses) population samples in new format to compare (if needed)\nbefore duplicates will be searched
\n
\n", "signature": "(\toppositor: Union[Callable[[numpy.ndarray], numpy.ndarray], NoneType] = None,\tcreator: Union[Callable[[], numpy.ndarray], NoneType] = None,\tconverter: Union[collections.abc.Callable[numpy.ndarray, numpy.ndarray], NoneType] = None) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.CopyBest", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.CopyBest", "kind": "function", "doc": "Copies best population object values (from dimensions in by_indexes) to all population
\n", "signature": "(\tby_indexes: Sequence[int]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"fullname": "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "Actions.PlotPopulationScores", "kind": "function", "doc": "plots population scores\nneeds 2 functions like data->str for title and file name
\n", "signature": "(\ttitle_pattern: Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], str] = <function Actions.<lambda>>,\tsave_as_name_pattern: Union[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], str], NoneType] = None) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions", "kind": "class", "doc": "Static class of built-in middle callback actions
\n"}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.EachGen", "kind": "function", "doc": "\n", "signature": "(\tgeneration_step: int = 10) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.Always", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.Always", "kind": "function", "doc": "makes action each generation
\n", "signature": "() -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.AfterStagnation", "kind": "function", "doc": "\n", "signature": "(\tstagnation_generations: int = 50) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.All", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.All", "kind": "function", "doc": "returns function which checks all conditions from conditions
\n", "signature": "(\tconditions: Sequence[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"fullname": "geneticalgorithm2.callbacks.middle.ActionConditions.Any", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "ActionConditions.Any", "kind": "function", "doc": "returns function which checks for any conditions from conditions
\n", "signature": "(\tconditions: Sequence[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]]) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"fullname": "geneticalgorithm2.callbacks.middle.MiddleCallbacks", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "MiddleCallbacks", "kind": "class", "doc": "Static class for middle callbacks creation
\n"}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"fullname": "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "MiddleCallbacks.UniversalCallback", "kind": "function", "doc": "universal function which constructs middle callback from action and condition
\n\nArguments:
\n\n\n- action:
\n- condition:
\n- set_data_after_callback: whether to signal internal data update if action update the data
\n
\n\nReturns:
\n", "signature": "(\taction: Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], geneticalgorithm2.callbacks.data.MiddleCallbackData],\tcondition: Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], bool],\tset_data_after_callback: bool = True) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"fullname": "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "MiddleCallbacks.ReduceMutationGen", "kind": "function", "doc": "\n", "signature": "(\treduce_coef: float = 0.9,\tmin_mutation: float = 0.005,\treduce_each_generation: int = 50,\treload_each_generation: int = 500) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"fullname": "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats", "modulename": "geneticalgorithm2.callbacks.middle", "qualname": "MiddleCallbacks.GeneDiversityStats", "kind": "function", "doc": "\n", "signature": "(\tstep_generations_for_plotting: int = 10) -> Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.simple": {"fullname": "geneticalgorithm2.callbacks.simple", "modulename": "geneticalgorithm2.callbacks.simple", "kind": "module", "doc": "\n"}, "geneticalgorithm2.callbacks.simple.Callbacks": {"fullname": "geneticalgorithm2.callbacks.simple.Callbacks", "modulename": "geneticalgorithm2.callbacks.simple", "qualname": "Callbacks", "kind": "class", "doc": "Static class with several simple callback methods
\n"}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"fullname": "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback", "modulename": "geneticalgorithm2.callbacks.simple", "qualname": "Callbacks.NoneCallback", "kind": "function", "doc": "\n", "signature": "():", "funcdef": "def"}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"fullname": "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation", "modulename": "geneticalgorithm2.callbacks.simple", "qualname": "Callbacks.SavePopulation", "kind": "function", "doc": "saves population to disk periodically
\n", "signature": "(\tfolder: Union[str, os.PathLike],\tsave_gen_step: int = 50,\tfile_prefix: str = 'population') -> collections.abc.Callable[int, typing.List[float], numpy.ndarray, numpy.ndarray, NoneType]:", "funcdef": "def"}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"fullname": "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess", "modulename": "geneticalgorithm2.callbacks.simple", "qualname": "Callbacks.PlotOptimizationProcess", "kind": "function", "doc": "Saves optimization process plots to disk periodically
\n\nArguments:
\n\n\n- folder:
\n- save_gen_step:
\n- show:
\n- main_color:
\n- file_prefix:
\n
\n\nReturns:
\n", "signature": "(\tfolder: Union[str, os.PathLike],\tsave_gen_step: int = 50,\tshow: bool = False,\tmain_color: str = 'green',\tfile_prefix: str = 'report') -> collections.abc.Callable[int, typing.List[float], numpy.ndarray, numpy.ndarray, NoneType]:", "funcdef": "def"}, "geneticalgorithm2.crossovers": {"fullname": "geneticalgorithm2.crossovers", "modulename": "geneticalgorithm2.crossovers", "kind": "module", "doc": "\n"}, "geneticalgorithm2.crossovers.CrossoverFunc": {"fullname": "geneticalgorithm2.crossovers.CrossoverFunc", "modulename": "geneticalgorithm2.crossovers", "qualname": "CrossoverFunc", "kind": "variable", "doc": "Function (parent1, parent2) -> (child1, child2)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], typing.Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]"}, "geneticalgorithm2.crossovers.get_copies": {"fullname": "geneticalgorithm2.crossovers.get_copies", "modulename": "geneticalgorithm2.crossovers", "qualname": "get_copies", "kind": "function", "doc": "\n", "signature": "(\tx: numpy.ndarray,\ty: numpy.ndarray) -> tuple[numpy.ndarray, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover": {"fullname": "geneticalgorithm2.crossovers.Crossover", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover", "kind": "class", "doc": "Crossover functions static class
\n"}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"fullname": "geneticalgorithm2.crossovers.Crossover.crossovers_dict", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.crossovers_dict", "kind": "function", "doc": "\n", "signature": "() -> dict[str, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.one_point": {"fullname": "geneticalgorithm2.crossovers.Crossover.one_point", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.one_point", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.two_point": {"fullname": "geneticalgorithm2.crossovers.Crossover.two_point", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.two_point", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.uniform": {"fullname": "geneticalgorithm2.crossovers.Crossover.uniform", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.uniform", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.segment": {"fullname": "geneticalgorithm2.crossovers.Crossover.segment", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.segment", "kind": "function", "doc": "\n", "signature": "(\tprob: int = 0.6) -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"fullname": "geneticalgorithm2.crossovers.Crossover.shuffle", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.shuffle", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"fullname": "geneticalgorithm2.crossovers.Crossover.uniform_window", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.uniform_window", "kind": "function", "doc": "\n", "signature": "(\twindow: int = 7) -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"fullname": "geneticalgorithm2.crossovers.Crossover.arithmetic", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.arithmetic", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.crossovers.Crossover.mixed": {"fullname": "geneticalgorithm2.crossovers.Crossover.mixed", "modulename": "geneticalgorithm2.crossovers", "qualname": "Crossover.mixed", "kind": "function", "doc": "\n", "signature": "(\talpha: float = 0.5) -> collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.data_types": {"fullname": "geneticalgorithm2.data_types", "modulename": "geneticalgorithm2.data_types", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.algorithm_params": {"fullname": "geneticalgorithm2.data_types.algorithm_params", "modulename": "geneticalgorithm2.data_types.algorithm_params", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams", "kind": "class", "doc": "Base optimization parameters container
\n", "bases": "geneticalgorithm2.data_types.base.DictLikeGetSet"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.__init__", "kind": "function", "doc": "\n", "signature": "(\tmax_num_iteration: Union[int, NoneType] = None,\tmax_iteration_without_improv: Union[int, NoneType] = None,\tpopulation_size: int = 100,\tmutation_probability: float = 0.1,\tmutation_discrete_probability: Union[float, NoneType] = None,\tcrossover_probability: Union[float, NoneType] = None,\telit_ratio: float = 0.04,\tparents_portion: float = 0.3,\tcrossover_type: Union[str, Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]] = 'uniform',\tmutation_type: Union[str, Callable[[float, float, float], float]] = 'uniform_by_center',\tmutation_discrete_type: Union[str, Callable[[int, int, int], int]] = 'uniform_discrete',\tselection_type: Union[str, Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]] = 'roulette')"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.max_num_iteration", "kind": "variable", "doc": "max iterations count of the algorithm
\n", "annotation": ": Union[int, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.max_iteration_without_improv", "kind": "variable", "doc": "max iteration without progress
\n", "annotation": ": Union[int, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.population_size", "kind": "variable", "doc": "\n", "annotation": ": int", "default_value": "100"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.mutation_probability", "kind": "variable", "doc": "\n", "annotation": ": float", "default_value": "0.1"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.mutation_discrete_probability", "kind": "variable", "doc": "\n", "annotation": ": Union[float, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.crossover_probability", "kind": "variable", "doc": "\n", "annotation": ": Union[float, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.elit_ratio", "kind": "variable", "doc": "\n", "annotation": ": float", "default_value": "0.04"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.parents_portion", "kind": "variable", "doc": "\n", "annotation": ": float", "default_value": "0.3"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.crossover_type", "kind": "variable", "doc": "\n", "annotation": ": Union[str, Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]]", "default_value": "'uniform'"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.mutation_type", "kind": "variable", "doc": "mutation type for real variable
\n", "annotation": ": Union[str, Callable[[float, float, float], float]]", "default_value": "'uniform_by_center'"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.mutation_discrete_type", "kind": "variable", "doc": "mutation type for discrete variables
\n", "annotation": ": Union[str, Callable[[int, int, int], int]]", "default_value": "'uniform_discrete'"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.selection_type", "kind": "variable", "doc": "\n", "annotation": ": Union[str, Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]]", "default_value": "'roulette'"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.validate", "kind": "function", "doc": "\n", "signature": "(self) -> None:", "funcdef": "def"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.get_CMS_funcs", "kind": "function", "doc": "Returns:
\n\n\n gotten (crossover, mutation, discrete mutation, selection) as necessary functions
\n
\n", "signature": "(\tself) -> Tuple[Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]], Callable[[float, float, float], float], Callable[[int, int, int], int], Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]]:", "funcdef": "def"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.update", "kind": "function", "doc": "\n", "signature": "(self, dct: Dict[str, Any]):", "funcdef": "def"}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"fullname": "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict", "modulename": "geneticalgorithm2.data_types.algorithm_params", "qualname": "AlgorithmParams.from_dict", "kind": "function", "doc": "\n", "signature": "(dct: Dict[str, Any]):", "funcdef": "def"}, "geneticalgorithm2.data_types.aliases": {"fullname": "geneticalgorithm2.data_types.aliases", "modulename": "geneticalgorithm2.data_types.aliases", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"fullname": "geneticalgorithm2.data_types.aliases.FunctionToMinimize", "modulename": "geneticalgorithm2.data_types.aliases", "qualname": "FunctionToMinimize", "kind": "variable", "doc": "usual (vector -> value) function to minimize
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray')], float]"}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"fullname": "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize", "modulename": "geneticalgorithm2.data_types.aliases", "qualname": "SetFunctionToMinimize", "kind": "variable", "doc": "(population -> scores) function to minimize
\n\nit is like a vectorized version of usual (vector -> value) function\n performing to all population samples in the one call
\n\nbut it can be written in more optimal way to speed up the calculations;\n also it can contain any logic due to samples relations and so on -- depends on the task
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray')], ForwardRef('np.ndarray')]"}, "geneticalgorithm2.data_types.base": {"fullname": "geneticalgorithm2.data_types.base", "modulename": "geneticalgorithm2.data_types.base", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"fullname": "geneticalgorithm2.data_types.base.DictLikeGetSet", "modulename": "geneticalgorithm2.data_types.base", "qualname": "DictLikeGetSet", "kind": "class", "doc": "\n"}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"fullname": "geneticalgorithm2.data_types.base.DictLikeGetSet.get", "modulename": "geneticalgorithm2.data_types.base", "qualname": "DictLikeGetSet.get", "kind": "function", "doc": "\n", "signature": "(self, item):", "funcdef": "def"}, "geneticalgorithm2.data_types.generation": {"fullname": "geneticalgorithm2.data_types.generation", "modulename": "geneticalgorithm2.data_types.generation", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"fullname": "geneticalgorithm2.data_types.generation.GenerationConvertible", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "GenerationConvertible", "kind": "variable", "doc": "The forms convertible to Generation
object:\n - Generation
object\n - path to saved generation\n - dict {'population': pop_matrix, 'scores': scores_vector}\n - wide population matrix\n - pair (pop_matrix, scores_vector)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Union[ForwardRef('Generation'), str, typing.Dict[typing.Literal['population', 'scores'], ForwardRef('np.ndarray')], ForwardRef('np.ndarray'), typing.Tuple[typing.Union[ForwardRef('np.ndarray'), NoneType], typing.Union[ForwardRef('np.ndarray'), NoneType]]]"}, "geneticalgorithm2.data_types.generation.Generation": {"fullname": "geneticalgorithm2.data_types.generation.Generation", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation", "kind": "class", "doc": "wrapper on generation object (pair of samples matrix and samples scores vector)
\n", "bases": "geneticalgorithm2.data_types.base.DictLikeGetSet"}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"fullname": "geneticalgorithm2.data_types.generation.Generation.__init__", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.__init__", "kind": "function", "doc": "\n", "signature": "(\tvariables: Union[numpy.ndarray, NoneType] = None,\tscores: Union[numpy.ndarray, NoneType] = None)"}, "geneticalgorithm2.data_types.generation.Generation.variables": {"fullname": "geneticalgorithm2.data_types.generation.Generation.variables", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.variables", "kind": "variable", "doc": "\n", "annotation": ": Union[numpy.ndarray, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.generation.Generation.scores": {"fullname": "geneticalgorithm2.data_types.generation.Generation.scores", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.scores", "kind": "variable", "doc": "\n", "annotation": ": Union[numpy.ndarray, NoneType]", "default_value": "None"}, "geneticalgorithm2.data_types.generation.Generation.size": {"fullname": "geneticalgorithm2.data_types.generation.Generation.size", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.size", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"fullname": "geneticalgorithm2.data_types.generation.Generation.dim_size", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.dim_size", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"fullname": "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.as_wide_matrix", "kind": "function", "doc": "\n", "signature": "(self) -> numpy.ndarray:", "funcdef": "def"}, "geneticalgorithm2.data_types.generation.Generation.save": {"fullname": "geneticalgorithm2.data_types.generation.Generation.save", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.save", "kind": "function", "doc": "\n", "signature": "(self, path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.data_types.generation.Generation.load": {"fullname": "geneticalgorithm2.data_types.generation.Generation.load", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.load", "kind": "function", "doc": "\n", "signature": "(path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"fullname": "geneticalgorithm2.data_types.generation.Generation.from_object", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.from_object", "kind": "function", "doc": "class constructor
\n", "signature": "(\tdim: int,\tobj: Union[geneticalgorithm2.data_types.generation.Generation, str, dict[Literal['population', 'scores'], numpy.ndarray], numpy.ndarray, tuple[Union[numpy.ndarray, NoneType], Union[numpy.ndarray, NoneType]]]):", "funcdef": "def"}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"fullname": "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix", "modulename": "geneticalgorithm2.data_types.generation", "qualname": "Generation.from_pop_matrix", "kind": "function", "doc": "\n", "signature": "(pop: numpy.ndarray):", "funcdef": "def"}, "geneticalgorithm2.data_types.result": {"fullname": "geneticalgorithm2.data_types.result", "modulename": "geneticalgorithm2.data_types.result", "kind": "module", "doc": "\n"}, "geneticalgorithm2.data_types.result.GAResult": {"fullname": "geneticalgorithm2.data_types.result.GAResult", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult", "kind": "class", "doc": "\n", "bases": "geneticalgorithm2.data_types.base.DictLikeGetSet"}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"fullname": "geneticalgorithm2.data_types.result.GAResult.__init__", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.__init__", "kind": "function", "doc": "\n", "signature": "(last_generation: geneticalgorithm2.data_types.generation.Generation)"}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"fullname": "geneticalgorithm2.data_types.result.GAResult.last_generation", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.last_generation", "kind": "variable", "doc": "\n", "annotation": ": geneticalgorithm2.data_types.generation.Generation"}, "geneticalgorithm2.data_types.result.GAResult.variable": {"fullname": "geneticalgorithm2.data_types.result.GAResult.variable", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.variable", "kind": "variable", "doc": "\n", "annotation": ": 'np.ndarray'"}, "geneticalgorithm2.data_types.result.GAResult.score": {"fullname": "geneticalgorithm2.data_types.result.GAResult.score", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.score", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.data_types.result.GAResult.function": {"fullname": "geneticalgorithm2.data_types.result.GAResult.function", "modulename": "geneticalgorithm2.data_types.result", "qualname": "GAResult.function", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"fullname": "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "VARIABLE_TYPE", "kind": "variable", "doc": "the variable type for a given or all dimension, determines the values discretion:\n real: double numbers\n int: integer number only\n bool: in the fact is integer with bounds [0, 1]
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Literal['int', 'real', 'bool']"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2", "kind": "class", "doc": "Genetic algorithm optimization process
\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.__init__", "kind": "function", "doc": "initializes the GA object and performs main checks
\n\nArguments:
\n\n\n- function: the given objective function to be minimized
\n- dimension: the number of decision variables, the population samples dimention
\n- variable_type: string means the variable type for all variables,\nfor mixed types use sequence of strings of type for each variable
\n- variable_boundaries: leave it None if variable_type is 'bool';\notherwise provide a sequence of tuples of length two as boundaries for each variable;\nthe length of the array must be equal dimension.\nFor example, ([0,100], [0,200]) determines\n lower boundary 0 and upper boundary 100 for first\n and upper boundary 200 for second variable\n and dimension must be 2.
\n- variable_type_mixed -- deprecated
\n- function_timeout: if the given function does not provide\noutput before function_timeout (unit is seconds) the algorithm raises error.\nFor example, when there is an infinite loop in the given function.\n
None
means disabling \n- algorithm_parameters: AlgorithmParams object or usual dictionary with algorithm parameter;\nit is not mandatory to provide all possible parameters
\n
\n\nNotes:
\n\n\n \n - This implementation minimizes the given objective function.\n For maximization u can multiply the function by -1 (for instance): the absolute\n value of the output would be the actual objective function
\n
\n
\n\nfor more details and examples of implementation please visit:\n https://github.com/PasaOpasen/geneticalgorithm2
\n", "signature": "(\tfunction: collections.abc.Callable[numpy.ndarray, float],\tdimension: int,\tvariable_type: Union[Literal['int', 'real', 'bool'], Sequence[Literal['int', 'real', 'bool']]] = 'bool',\tvariable_boundaries: Union[numpy.ndarray, Sequence[Tuple[float, float]], NoneType] = None,\tvariable_type_mixed=None,\tfunction_timeout: Union[float, NoneType] = None,\talgorithm_parameters: Union[geneticalgorithm2.data_types.algorithm_params.AlgorithmParams, Dict[str, Any]] = AlgorithmParams(max_num_iteration=None, max_iteration_without_improv=None, population_size=100, mutation_probability=0.1, mutation_discrete_probability=None, crossover_probability=None, elit_ratio=0.04, parents_portion=0.3, crossover_type='uniform', mutation_type='uniform_by_center', mutation_discrete_type='uniform_discrete', selection_type='roulette'))"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.default_params", "kind": "variable", "doc": "\n", "default_value": "AlgorithmParams(max_num_iteration=None, max_iteration_without_improv=None, population_size=100, mutation_probability=0.1, mutation_discrete_probability=None, crossover_probability=None, elit_ratio=0.04, parents_portion=0.3, crossover_type='uniform', mutation_type='uniform_by_center', mutation_discrete_type='uniform_discrete', selection_type='roulette')"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.PROGRESS_BAR_LEN", "kind": "variable", "doc": "max count of symbols in the progress bar
\n", "default_value": "20"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.output_dict", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.needs_mutation", "kind": "variable", "doc": "whether the mutation is required
\n", "annotation": ": bool"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.f", "kind": "variable", "doc": "\n", "annotation": ": collections.abc.Callable[numpy.ndarray, float]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.funtimeout", "kind": "variable", "doc": "\n", "annotation": ": float"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.set_function", "kind": "variable", "doc": "\n", "annotation": ": Callable[[numpy.ndarray], numpy.ndarray]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.var_bounds", "kind": "variable", "doc": "\n", "annotation": ": List[Tuple[Union[int, float], Union[int, float]]]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.checked_reports", "kind": "variable", "doc": "\n", "annotation": ": list[tuple[str, collections.abc.Callable[numpy.ndarray, NoneType]]]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.population_size", "kind": "variable", "doc": "\n", "annotation": ": int"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.progress_stream", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.param", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.dim", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.prob_mut", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.prob_mut_discrete", "kind": "variable", "doc": "\n"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.fill_children", "kind": "variable", "doc": "custom function which adds children for population POP \n where POP[:parents_count] are parents lines and next lines are for children
\n", "annotation": ": Union[collections.abc.Callable[numpy.ndarray, int, NoneType], NoneType]"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.run", "kind": "function", "doc": "runs optimization process
\n\nArguments:
\n\n\n- no_plot: do not plot results using matplotlib by default
\n- disable_printing: do not print log info of optimization process
\n- progress_bar_stream: 'stdout', 'stderr' or None to disable progress bar
\n- disable_progress_bar: deprecated
\n- set_function: set function to be used instead of usual function
\n- apply_function_to_parents: whether to apply function to parents from previous generation (if it's needed)
\n- start_generation: initial generation object of any
GenerationConvertible
type \n- studEA: using stud EA strategy (crossover with best object always)
\n- mutation_indexes: indexes of dimensions where mutation can be performed (all dimensions by default)
\n- init_creator: the function creates population samples.\nBy default -- random uniform for real variables and random uniform for int
\n- init_oppositors: the list of oppositors creates oppositions for base population. No by default
\n- duplicates_oppositor: oppositor for applying after duplicates removing.\nBy default -- using just random initializer from creator
\n- remove_duplicates_generation_step: step for removing duplicates (have a sense with discrete tasks).\nNo by default
\n- revolution_oppositor: oppositor for revolution time. No by default
\n- revolution_after_stagnation_step: create revolution after this generations of stagnation. No by default
\n- revolution_part: float, the part of generation to being oppose. By default is 0.3
\n- population_initializer: object for actions at population initialization step\nto create better start population. See doc
\n- stop_when_reached: stop searching after reaching this value (it can be potential minimum or something else)
\n- callbacks: sequence of callback functions with structure:\n(generation_number, report_list, last_population, last_scores) -> do some action
\n- middle_callbacks: sequence of functions made
MiddleCallback
class \n- time_limit_secs: limit time of working (in seconds)
\n- save_last_generation_as: path to .npz file for saving last_generation as numpy dictionary like\n{'population': 2D-array, 'scores': 1D-array}, None if doesn't need to save in file
\n- seed: random seed (None if doesn't matter)
\n
\n", "signature": "(\tself,\tno_plot: bool = False,\tdisable_printing: bool = False,\tprogress_bar_stream: Union[str, NoneType] = 'stdout',\tdisable_progress_bar: bool = False,\tset_function: collections.abc.Callable[numpy.ndarray, numpy.ndarray] = None,\tapply_function_to_parents: bool = False,\tstart_generation: Union[geneticalgorithm2.data_types.generation.Generation, str, dict[Literal['population', 'scores'], numpy.ndarray], numpy.ndarray, tuple[Union[numpy.ndarray, NoneType], Union[numpy.ndarray, NoneType]]] = Generation(variables=None, scores=None),\tstudEA: bool = False,\tmutation_indexes: Union[Iterable[int], NoneType] = None,\tinit_creator: Union[Callable[[], numpy.ndarray], NoneType] = None,\tinit_oppositors: Union[Sequence[Callable[[numpy.ndarray], numpy.ndarray]], NoneType] = None,\tduplicates_oppositor: Union[Callable[[numpy.ndarray], numpy.ndarray], NoneType] = None,\tremove_duplicates_generation_step: Union[int, NoneType] = None,\trevolution_oppositor: Union[Callable[[numpy.ndarray], numpy.ndarray], NoneType] = None,\trevolution_after_stagnation_step: Union[int, NoneType] = None,\trevolution_part: float = 0.3,\tpopulation_initializer: tuple[int, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]] = (1, <function get_population_initializer.<locals>.process_population>),\tstop_when_reached: Union[float, NoneType] = None,\tcallbacks: Union[collections.abc.Sequence[collections.abc.Callable[int, List[float], numpy.ndarray, numpy.ndarray, NoneType]], NoneType] = None,\tmiddle_callbacks: Union[Sequence[Callable[[geneticalgorithm2.callbacks.data.MiddleCallbackData], Tuple[geneticalgorithm2.callbacks.data.MiddleCallbackData, bool]]], NoneType] = None,\ttime_limit_secs: Union[float, NoneType] = None,\tsave_last_generation_as: Union[str, NoneType] = None,\tseed: Union[int, NoneType] = None):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.plot_results", "kind": "function", "doc": "Simple plot of self.report (if not empty)
\n", "signature": "(\tself,\ttitle: str = 'Genetic Algorithm',\tsave_as: Union[str, NoneType] = None,\tdpi: int = 200,\tmain_color: str = 'blue'):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.plot_generation_scores", "kind": "function", "doc": "Plots barplot of scores of last population
\n", "signature": "(\tself,\ttitle: str = 'Last generation scores',\tsave_as: Union[str, NoneType] = None):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.mut", "kind": "function", "doc": "just mutation
\n", "signature": "(self, x: numpy.ndarray):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.mut_middle", "kind": "function", "doc": "mutation oriented on parents
\n", "signature": "(self, x: numpy.ndarray, p1: numpy.ndarray, p2: numpy.ndarray):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.default_set_function", "kind": "function", "doc": "simple function for creating set_function \nfunction_for_set just applies to each row of population
\n", "signature": "(function_for_set: collections.abc.Callable[numpy.ndarray, float]):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.vectorized_set_function", "kind": "function", "doc": "works like default, but faster for big populations and slower for little\nfunction_for_set just applyes to each row of population
\n", "signature": "(function_for_set: collections.abc.Callable[numpy.ndarray, float]):", "funcdef": "def"}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"fullname": "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess", "modulename": "geneticalgorithm2.geneticalgorithm2", "qualname": "GeneticAlgorithm2.set_function_multiprocess", "kind": "function", "doc": "like function_for_set but uses joblib with n_jobs (-1 goes to count of available processors)
\n", "signature": "(\tfunction_for_set: collections.abc.Callable[numpy.ndarray, float],\tn_jobs: int = -1):", "funcdef": "def"}, "geneticalgorithm2.mutations": {"fullname": "geneticalgorithm2.mutations", "modulename": "geneticalgorithm2.mutations", "kind": "module", "doc": "\n"}, "geneticalgorithm2.mutations.MutationFloatFunc": {"fullname": "geneticalgorithm2.mutations.MutationFloatFunc", "modulename": "geneticalgorithm2.mutations", "qualname": "MutationFloatFunc", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[float, float, float], float]"}, "geneticalgorithm2.mutations.MutationIntFunc": {"fullname": "geneticalgorithm2.mutations.MutationIntFunc", "modulename": "geneticalgorithm2.mutations", "qualname": "MutationIntFunc", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[int, int, int], int]"}, "geneticalgorithm2.mutations.MutationFunc": {"fullname": "geneticalgorithm2.mutations.MutationFunc", "modulename": "geneticalgorithm2.mutations", "qualname": "MutationFunc", "kind": "variable", "doc": "Function (x, left, right) -> value
\n\nWhich mutates x to value according to bounds (left, right)
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Union[typing.Callable[[int, int, int], int], typing.Callable[[float, float, float], float]]"}, "geneticalgorithm2.mutations.Mutations": {"fullname": "geneticalgorithm2.mutations.Mutations", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations", "kind": "class", "doc": "Mutations functions static class
\n"}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"fullname": "geneticalgorithm2.mutations.Mutations.mutations_dict", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.mutations_dict", "kind": "function", "doc": "\n", "signature": "() -> Dict[str, Callable[[float, float, float], float]]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"fullname": "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.mutations_discrete_dict", "kind": "function", "doc": "\n", "signature": "() -> Dict[str, Callable[[int, int, int], int]]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"fullname": "geneticalgorithm2.mutations.Mutations.uniform_by_x", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.uniform_by_x", "kind": "function", "doc": "\n", "signature": "() -> Callable[[float, float, float], float]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"fullname": "geneticalgorithm2.mutations.Mutations.uniform_by_center", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.uniform_by_center", "kind": "function", "doc": "\n", "signature": "() -> Callable[[float, float, float], float]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"fullname": "geneticalgorithm2.mutations.Mutations.gauss_by_x", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.gauss_by_x", "kind": "function", "doc": "gauss mutation with x as center and sd*length_of_zone as std
\n", "signature": "(sd: float = 0.3) -> Callable[[float, float, float], float]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"fullname": "geneticalgorithm2.mutations.Mutations.gauss_by_center", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.gauss_by_center", "kind": "function", "doc": "gauss mutation with (left+right)/2 as center and sd*length_of_zone as std
\n", "signature": "(sd: float = 0.3) -> Callable[[float, float, float], float]:", "funcdef": "def"}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"fullname": "geneticalgorithm2.mutations.Mutations.uniform_discrete", "modulename": "geneticalgorithm2.mutations", "qualname": "Mutations.uniform_discrete", "kind": "function", "doc": "\n", "signature": "() -> Callable[[int, int, int], int]:", "funcdef": "def"}, "geneticalgorithm2.population_initializer": {"fullname": "geneticalgorithm2.population_initializer", "modulename": "geneticalgorithm2.population_initializer", "kind": "module", "doc": "\n"}, "geneticalgorithm2.population_initializer.PopulationModifier": {"fullname": "geneticalgorithm2.population_initializer.PopulationModifier", "modulename": "geneticalgorithm2.population_initializer", "qualname": "PopulationModifier", "kind": "variable", "doc": "function (population matrix, population scores) -> (new matrix, new scores)\nwhich will perform the bests selection and local optimization and other population transformations
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')], typing.Tuple[ForwardRef('np.ndarray'), ForwardRef('np.ndarray')]]"}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"fullname": "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE", "modulename": "geneticalgorithm2.population_initializer", "qualname": "LOCAL_OPTIMIZATION_STEP_CASE", "kind": "variable", "doc": "When the local optimization (candidates enhancing) must be performed:\n * 'never' -- don't do local optimization\n * 'before_select' -- before selection best N objects \n (example: do local optimization for 5N objects and select N best results)\n * 'after_select' -- do local optimization on best selected N objects
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Literal['before_select', 'after_select', 'never']"}, "geneticalgorithm2.population_initializer.get_population_initializer": {"fullname": "geneticalgorithm2.population_initializer.get_population_initializer", "modulename": "geneticalgorithm2.population_initializer", "qualname": "get_population_initializer", "kind": "function", "doc": "Arguments:
\n\n\n- select_best_of: determines population size to select 1/select_best_of best part of start population.\nFor example, for select_best_of = 4 and population_size = N there will be selected N best objects\n from 5N generated objects (if start_generation=None dictionary).\nIf start_generation is not None dictionary, there will be selected best (start_generation) / N objects
\n- local_optimization_step: when to perform local optimization
\n- local_optimizer: the local optimization function (object array, its score) -> (modified array, its score)
\n
\n\nReturns:
\n\n\n select_best_of, population modifier
\n
\n", "signature": "(\tselect_best_of: int = 4,\tlocal_optimization_step: Literal['before_select', 'after_select', 'never'] = 'never',\tlocal_optimizer: Union[collections.abc.Callable[numpy.ndarray, float, tuple[numpy.ndarray, float]], NoneType] = None) -> tuple[int, collections.abc.Callable[numpy.ndarray, numpy.ndarray, tuple[numpy.ndarray, numpy.ndarray]]]:", "funcdef": "def"}, "geneticalgorithm2.selections": {"fullname": "geneticalgorithm2.selections", "modulename": "geneticalgorithm2.selections", "kind": "module", "doc": "\n"}, "geneticalgorithm2.selections.SelectionFunc": {"fullname": "geneticalgorithm2.selections.SelectionFunc", "modulename": "geneticalgorithm2.selections", "qualname": "SelectionFunc", "kind": "variable", "doc": "Function (scores, count to select) -> indexes of selected
\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Callable[[ForwardRef('np.ndarray'), int], ForwardRef('np.ndarray')]"}, "geneticalgorithm2.selections.inverse_scores": {"fullname": "geneticalgorithm2.selections.inverse_scores", "modulename": "geneticalgorithm2.selections", "qualname": "inverse_scores", "kind": "function", "doc": "inverses scores (min val goes to max)
\n", "signature": "(scores: numpy.ndarray) -> numpy.ndarray:", "funcdef": "def"}, "geneticalgorithm2.selections.roulette": {"fullname": "geneticalgorithm2.selections.roulette", "modulename": "geneticalgorithm2.selections", "qualname": "roulette", "kind": "function", "doc": "simplest roulette selector for which the highest score means more preferred
\n", "signature": "(scores: numpy.ndarray, parents_count: int) -> numpy.ndarray:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection": {"fullname": "geneticalgorithm2.selections.Selection", "modulename": "geneticalgorithm2.selections", "qualname": "Selection", "kind": "class", "doc": "Selections functions static class
\n"}, "geneticalgorithm2.selections.Selection.selections_dict": {"fullname": "geneticalgorithm2.selections.Selection.selections_dict", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.selections_dict", "kind": "function", "doc": "\n", "signature": "() -> dict[str, collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.fully_random": {"fullname": "geneticalgorithm2.selections.Selection.fully_random", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.fully_random", "kind": "function", "doc": "returns the selector of fully random parents (for tests purposes)
\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.roulette": {"fullname": "geneticalgorithm2.selections.Selection.roulette", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.roulette", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.stochastic": {"fullname": "geneticalgorithm2.selections.Selection.stochastic", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.stochastic", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"fullname": "geneticalgorithm2.selections.Selection.sigma_scaling", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.sigma_scaling", "kind": "function", "doc": "\n", "signature": "(\tepsilon: float = 0.01,\tis_noisy: bool = False) -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.ranking": {"fullname": "geneticalgorithm2.selections.Selection.ranking", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.ranking", "kind": "function", "doc": "\n", "signature": "() -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.linear_ranking": {"fullname": "geneticalgorithm2.selections.Selection.linear_ranking", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.linear_ranking", "kind": "function", "doc": "\n", "signature": "(\tselection_pressure: float = 1.5) -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.selections.Selection.tournament": {"fullname": "geneticalgorithm2.selections.Selection.tournament", "modulename": "geneticalgorithm2.selections", "qualname": "Selection.tournament", "kind": "function", "doc": "\n", "signature": "(\ttau: int = 2) -> collections.abc.Callable[numpy.ndarray, int, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.utils": {"fullname": "geneticalgorithm2.utils", "modulename": "geneticalgorithm2.utils", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.aliases": {"fullname": "geneticalgorithm2.utils.aliases", "modulename": "geneticalgorithm2.utils.aliases", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.aliases.Number": {"fullname": "geneticalgorithm2.utils.aliases.Number", "modulename": "geneticalgorithm2.utils.aliases", "qualname": "Number", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Union[int, float]"}, "geneticalgorithm2.utils.aliases.array1D": {"fullname": "geneticalgorithm2.utils.aliases.array1D", "modulename": "geneticalgorithm2.utils.aliases", "qualname": "array1D", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "'np.ndarray'"}, "geneticalgorithm2.utils.aliases.array2D": {"fullname": "geneticalgorithm2.utils.aliases.array2D", "modulename": "geneticalgorithm2.utils.aliases", "qualname": "array2D", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "'np.ndarray'"}, "geneticalgorithm2.utils.aliases.PathLike": {"fullname": "geneticalgorithm2.utils.aliases.PathLike", "modulename": "geneticalgorithm2.utils.aliases", "qualname": "PathLike", "kind": "variable", "doc": "\n", "annotation": ": typing_extensions.TypeAlias", "default_value": "typing.Union[str, os.PathLike]"}, "geneticalgorithm2.utils.cache": {"fullname": "geneticalgorithm2.utils.cache", "modulename": "geneticalgorithm2.utils.cache", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.cache.np_lru_cache": {"fullname": "geneticalgorithm2.utils.cache.np_lru_cache", "modulename": "geneticalgorithm2.utils.cache", "qualname": "np_lru_cache", "kind": "function", "doc": "LRU cache implementation for functions whose FIRST parameter is a numpy array\n forked from: https://gist.github.com/Susensio/61f4fee01150caaac1e10fc5f005eb75
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "geneticalgorithm2.utils.files": {"fullname": "geneticalgorithm2.utils.files", "modulename": "geneticalgorithm2.utils.files", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.files.mkdir_of_file": {"fullname": "geneticalgorithm2.utils.files.mkdir_of_file", "modulename": "geneticalgorithm2.utils.files", "qualname": "mkdir_of_file", "kind": "function", "doc": "\u0434\u043b\u044f \u044d\u0442\u043e\u0433\u043e \u0444\u0430\u0439\u043b\u0430 \u0441\u043e\u0437\u0434\u0430\u0451\u0442 \u043f\u0430\u043f\u043a\u0443, \u0432 \u043a\u043e\u0442\u043e\u0440\u043e\u0439 \u043e\u043d \u0434\u043e\u043b\u0436\u0435\u043d \u043b\u0435\u0436\u0430\u0442\u044c
\n", "signature": "(file_path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.utils.files.mkdir": {"fullname": "geneticalgorithm2.utils.files.mkdir", "modulename": "geneticalgorithm2.utils.files", "qualname": "mkdir", "kind": "function", "doc": "mkdir with parents
\n", "signature": "(path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.utils.files.touch": {"fullname": "geneticalgorithm2.utils.files.touch", "modulename": "geneticalgorithm2.utils.files", "qualname": "touch", "kind": "function", "doc": "makes empty file, makes directories for this file automatically
\n", "signature": "(path: Union[str, os.PathLike]):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs": {"fullname": "geneticalgorithm2.utils.funcs", "modulename": "geneticalgorithm2.utils.funcs", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.funcs.fast_min": {"fullname": "geneticalgorithm2.utils.funcs.fast_min", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "fast_min", "kind": "function", "doc": "1.5 times faster than row min(a, b)
\n", "signature": "(a, b):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.fast_max": {"fullname": "geneticalgorithm2.utils.funcs.fast_max", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "fast_max", "kind": "function", "doc": "\n", "signature": "(a, b):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.can_be_prob": {"fullname": "geneticalgorithm2.utils.funcs.can_be_prob", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "can_be_prob", "kind": "function", "doc": "\n", "signature": "(value: float) -> bool:", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"fullname": "geneticalgorithm2.utils.funcs.is_current_gen_number", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "is_current_gen_number", "kind": "function", "doc": "\n", "signature": "(number: Union[int, NoneType]):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.is_numpy": {"fullname": "geneticalgorithm2.utils.funcs.is_numpy", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "is_numpy", "kind": "function", "doc": "\n", "signature": "(arg: Any):", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.split_matrix": {"fullname": "geneticalgorithm2.utils.funcs.split_matrix", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "split_matrix", "kind": "function", "doc": "splits wide pop matrix to variables and scores
\n", "signature": "(mat: numpy.ndarray) -> tuple[numpy.ndarray, numpy.ndarray]:", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"fullname": "geneticalgorithm2.utils.funcs.union_to_matrix", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "union_to_matrix", "kind": "function", "doc": "union variables and scores to wide pop matrix
\n", "signature": "(variables_2D: numpy.ndarray, scores_1D: numpy.ndarray) -> numpy.ndarray:", "funcdef": "def"}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"fullname": "geneticalgorithm2.utils.funcs.random_indexes_pair", "modulename": "geneticalgorithm2.utils.funcs", "qualname": "random_indexes_pair", "kind": "function", "doc": "works 3 times faster than random.sample(range(seq_len), 2)
\n", "signature": "(seq_len: int) -> Tuple[int, int]:", "funcdef": "def"}, "geneticalgorithm2.utils.plotting": {"fullname": "geneticalgorithm2.utils.plotting", "modulename": "geneticalgorithm2.utils.plotting", "kind": "module", "doc": "\n"}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"fullname": "geneticalgorithm2.utils.plotting.plot_several_lines", "modulename": "geneticalgorithm2.utils.plotting", "qualname": "plot_several_lines", "kind": "function", "doc": "\n", "signature": "(\tlines: Sequence[Sequence[float]],\tcolors: Sequence[str],\tlabels: Union[Sequence[str], NoneType] = None,\tlinewidths: Union[Sequence[int], NoneType] = None,\ttitle: str = '',\txlabel: str = 'Generation',\tylabel: str = 'Minimized function',\tsave_as: Union[str, os.PathLike, NoneType] = None,\tdpi: int = 200):", "funcdef": "def"}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"fullname": "geneticalgorithm2.utils.plotting.plot_pop_scores", "modulename": "geneticalgorithm2.utils.plotting", "qualname": "plot_pop_scores", "kind": "function", "doc": "plots scores (numeric values) as sorted bars
\n", "signature": "(\tscores: Sequence[float],\ttitle: str = 'Population scores',\tsave_as: Union[str, NoneType] = None):", "funcdef": "def"}}, "docInfo": {"geneticalgorithm2": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 43}, "geneticalgorithm2.geneticalgorithm2": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.Population_initializer": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 230, "bases": 0, "doc": 117}, "geneticalgorithm2.callbacks": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 8}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 408, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"qualname": 4, "fullname": 7, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"qualname": 2, "fullname": 5, "annotation": 23, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"qualname": 2, "fullname": 5, "annotation": 13, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"qualname": 3, "fullname": 6, "annotation": 13, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 16, "signature": 0, "bases": 0, "doc": 29}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 6, "signature": 0, "bases": 0, "doc": 17}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 9, "signature": 0, "bases": 0, "doc": 16}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 11, "signature": 0, "bases": 0, "doc": 48}, "geneticalgorithm2.callbacks.middle": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.middle.Actions": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 4}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 71, "bases": 0, "doc": 8}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 5}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 115, "bases": 0, "doc": 6}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 123, "bases": 0, "doc": 6}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 202, "bases": 0, "doc": 87}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 69, "bases": 0, "doc": 15}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 173, "bases": 0, "doc": 16}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 6}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 10}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 11}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 173, "bases": 0, "doc": 53}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 141, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.simple": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.simple.Callbacks": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 139, "bases": 0, "doc": 7}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 180, "bases": 0, "doc": 53}, "geneticalgorithm2.crossovers": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.CrossoverFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 24, "signature": 0, "bases": 0, "doc": 9}, "geneticalgorithm2.crossovers.get_copies": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.one_point": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.two_point": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.uniform": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.segment": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "geneticalgorithm2.crossovers.Crossover.mixed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 6}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 504, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"qualname": 4, "fullname": 9, "annotation": 3, "default_value": 1, "signature": 0, "bases": 0, "doc": 8}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"qualname": 5, "fullname": 10, "annotation": 3, "default_value": 1, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"qualname": 4, "fullname": 9, "annotation": 3, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"qualname": 3, "fullname": 8, "annotation": 3, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"qualname": 3, "fullname": 8, "annotation": 24, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"qualname": 3, "fullname": 8, "annotation": 6, "default_value": 7, "signature": 0, "bases": 0, "doc": 7}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"qualname": 4, "fullname": 9, "annotation": 6, "default_value": 6, "signature": 0, "bases": 0, "doc": 7}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"qualname": 3, "fullname": 8, "annotation": 14, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 188, "bases": 0, "doc": 18}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.aliases": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"qualname": 1, "fullname": 5, "annotation": 4, "default_value": 8, "signature": 0, "bases": 0, "doc": 9}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"qualname": 1, "fullname": 5, "annotation": 4, "default_value": 13, "signature": 0, "bases": 0, "doc": 65}, "geneticalgorithm2.data_types.base": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"qualname": 1, "fullname": 5, "annotation": 4, "default_value": 42, "signature": 0, "bases": 0, "doc": 37}, "geneticalgorithm2.data_types.generation.Generation": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 15}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 74, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.variables": {"qualname": 2, "fullname": 6, "annotation": 4, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.scores": {"qualname": 2, "fullname": 6, "annotation": 4, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.size": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.save": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.load": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 152, "bases": 0, "doc": 4}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"qualname": 3, "fullname": 7, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.variable": {"qualname": 2, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.score": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.data_types.result.GAResult.function": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 12, "signature": 0, "bases": 0, "doc": 32}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 479, "bases": 0, "doc": 264}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 57, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 10}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 7}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"qualname": 3, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"qualname": 3, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"qualname": 3, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"qualname": 3, "fullname": 5, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 22}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 1116, "bases": 0, "doc": 425}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 107, "bases": 0, "doc": 11}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 9}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 4}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 6}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 18}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 24}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 20}, "geneticalgorithm2.mutations": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.MutationFloatFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.MutationIntFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.MutationFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 11, "signature": 0, "bases": 0, "doc": 21}, "geneticalgorithm2.mutations.Mutations": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 14}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 15}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "geneticalgorithm2.population_initializer": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.population_initializer.PopulationModifier": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 24, "signature": 0, "bases": 0, "doc": 25}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"qualname": 4, "fullname": 7, "annotation": 4, "default_value": 14, "signature": 0, "bases": 0, "doc": 49}, "geneticalgorithm2.population_initializer.get_population_initializer": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 230, "bases": 0, "doc": 117}, "geneticalgorithm2.selections": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.SelectionFunc": {"qualname": 1, "fullname": 3, "annotation": 4, "default_value": 13, "signature": 0, "bases": 0, "doc": 11}, "geneticalgorithm2.selections.inverse_scores": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 10}, "geneticalgorithm2.selections.roulette": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 13}, "geneticalgorithm2.selections.Selection": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "geneticalgorithm2.selections.Selection.selections_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.fully_random": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 13}, "geneticalgorithm2.selections.Selection.roulette": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.stochastic": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.ranking": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.linear_ranking": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "geneticalgorithm2.selections.Selection.tournament": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 65, "bases": 0, "doc": 3}, "geneticalgorithm2.utils": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases.Number": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases.array1D": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases.array2D": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.aliases.PathLike": {"qualname": 1, "fullname": 4, "annotation": 4, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.cache": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.cache.np_lru_cache": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 21}, "geneticalgorithm2.utils.files": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.files.mkdir_of_file": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 12}, "geneticalgorithm2.utils.files.mkdir": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 5}, "geneticalgorithm2.utils.files.touch": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 11}, "geneticalgorithm2.utils.funcs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.fast_min": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 12}, "geneticalgorithm2.utils.funcs.fast_max": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.can_be_prob": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.is_numpy": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.funcs.split_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 10}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 10}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 16}, "geneticalgorithm2.utils.plotting": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 238, "bases": 0, "doc": 3}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 9}}, "length": 190, "save": true}, "index": {"qualname": {"root": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 5, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 27}, "docs": {}, "df": 0}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 15, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 6}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}}, "df": 3}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 2}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}}, "df": 17}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 9, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 8}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 4}}}}}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 11, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 1}}, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "u": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 3}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}}, "df": 13, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 4}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 7}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "m": {"docs": {"geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}, "e": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}}, "df": 18}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"1": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.aliases.array1D": {"tf": 1}}, "df": 1}}, "2": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.aliases.array2D": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}}}}, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}}, "df": 1}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 4}, "e": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}, "x": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}}, "df": 2}}}, "fullname": {"root": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 5, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.data": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.aliases": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.base": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.data_types.generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.data_types.result": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}, "geneticalgorithm2.population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.selections": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}, "geneticalgorithm2.utils": {"tf": 1}, "geneticalgorithm2.utils.aliases": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}, "geneticalgorithm2.utils.cache": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}, "geneticalgorithm2.utils.files": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.funcs": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}, "geneticalgorithm2.utils.plotting": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 190}, "docs": {}, "df": 0}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.data_types.generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 17, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 6}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 7, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}}, "df": 3}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 20}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.utils.plotting": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 2}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.data": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.4142135623730951}}, "df": 48}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.cache": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1.4142135623730951}}, "df": 2}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 3}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}}, "df": 13, "s": {"docs": {"geneticalgorithm2.crossovers": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}}, "df": 13}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.aliases": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.base": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.data_types.generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.data_types.result": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 68}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 7}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "m": {"docs": {"geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 21, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}}, "df": 17}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 4}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 9, "s": {"docs": {"geneticalgorithm2.mutations": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.mutations.Mutations": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1.4142135623730951}}, "df": 12}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 4}}}}}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.result": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 7, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 5, "s": {"docs": {"geneticalgorithm2.data_types": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.aliases": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.base": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.data_types.generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.data_types.result": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}}, "df": 46}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 11, "s": {"docs": {"geneticalgorithm2.selections": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 13}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 1}}, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "u": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.utils.funcs": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 10}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}, "e": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.utils.files": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}}, "df": 19, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.aliases": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.utils.aliases": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 8}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"1": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.aliases.array1D": {"tf": 1}}, "df": 1}}, "2": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.aliases.array2D": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}}}}, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils": {"tf": 1}, "geneticalgorithm2.utils.aliases": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}, "geneticalgorithm2.utils.cache": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}, "geneticalgorithm2.utils.files": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.funcs": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}, "geneticalgorithm2.utils.plotting": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 24}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1}}, "df": 1}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}}}}}}, "f": {"docs": {"geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.base": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}}, "df": 3}}, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 4}, "e": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}, "x": {"docs": {"geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}}, "df": 2}}}, "annotation": {"root": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 62, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 20}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 20}}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 20}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 12}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 12}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1.4142135623730951}}, "df": 13}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}}, "df": 5}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}}, "df": 2}}}}}}}}}}}, "x": {"2": {"7": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 2.8284271247461903}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 2}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1.4142135623730951}}, "df": 6}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 3}}}}}, "default_value": {"root": {"0": {"4": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}}, "df": 4}, "1": {"0": {"0": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "2": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1.4142135623730951}}, "df": 17, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 3}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 5}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 2}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "x": {"2": {"7": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 2}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 2}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 3.7416573867739413}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 2.8284271247461903}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 2.8284271247461903}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 2.449489742783178}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 2}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1.4142135623730951}}, "df": 17}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 17}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 2}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 6}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 2}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 2}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 2}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}}, "df": 9}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 2}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 2}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 2}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1}}, "df": 9}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 2}}, "df": 7, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 2}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.aliases.Number": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.aliases.PathLike": {"tf": 1}}, "df": 1}}}}, "signature": {"root": {"0": {"0": {"5": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}, "4": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 10}, "1": {"0": {"0": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 5, "d": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}, "2": {"0": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 1, "d": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}, "3": {"9": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.8284271247461903}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 4}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 4.47213595499958}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 3.4641016151377544}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 4.69041575982343}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.8284271247461903}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 2.449489742783178}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1.4142135623730951}}, "df": 15}, "docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 5}, "4": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}, "5": {"0": {"0": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}, "docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 4}, "docs": {"geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 2}, "6": {"docs": {"geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}}, "df": 1}, "7": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}}, "df": 1}, "9": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 2}, "docs": {"geneticalgorithm2.Population_initializer": {"tf": 13.341664064126334}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 17.52141546793523}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 7.681145747868608}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 7.54983443527075}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 10.44030650891055}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 9.643650760992955}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 10}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 12.884098726725126}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 7.483314773547883}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 11.661903789690601}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 6.708203932499369}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 5.5677643628300215}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 6.708203932499369}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 8}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 8}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 11.789826122551595}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 10.488088481701515}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 8.06225774829855}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 2.6457513110645907}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 10.535653752852738}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 11.958260743101398}, "geneticalgorithm2.crossovers.get_copies": {"tf": 7.211102550927978}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 8}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 8.366600265340756}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 8.366600265340756}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 7.483314773547883}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 8.366600265340756}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 19.519221295943137}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 3.4641016151377544}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 11.916375287812984}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 5.291502622129181}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 4.898979485566356}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 3.7416573867739413}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 7.874007874011811}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 4}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 5.656854249492381}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 5.291502622129181}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 11}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 4.242640687119285}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 4.898979485566356}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 18.81488772222678}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 29.698484809834994}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 9.219544457292887}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 7.280109889280518}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 4.69041575982343}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 6.782329983125268}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 6}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 6}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 7.416198487095663}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 6.082762530298219}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 6.082762530298219}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 5.385164807134504}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 5.385164807134504}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 6.48074069840786}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 6.48074069840786}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 5.385164807134504}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 13.341664064126334}, "geneticalgorithm2.selections.inverse_scores": {"tf": 4.898979485566356}, "geneticalgorithm2.selections.roulette": {"tf": 5.656854249492381}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 6.928203230275509}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 6.324555320336759}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 6.324555320336759}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 6.324555320336759}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 8.306623862918075}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 6.324555320336759}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 7.3484692283495345}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 7.3484692283495345}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 4.242640687119285}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 5.291502622129181}, "geneticalgorithm2.utils.files.mkdir": {"tf": 5.291502622129181}, "geneticalgorithm2.utils.files.touch": {"tf": 5.291502622129181}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 3.7416573867739413}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 3.7416573867739413}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 4}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 4.898979485566356}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 3.7416573867739413}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 6.164414002968976}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 6}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 5.0990195135927845}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 13.892443989449804}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 7.874007874011811}}, "df": 85, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 11}}, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 6}, "q": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 2.23606797749979}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 10}}}}}}, "c": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 7}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 2.449489742783178}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1.4142135623730951}}, "df": 24, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 8}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1.4142135623730951}}, "df": 8}}}}}, "d": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}, "b": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 13}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 8}, "b": {"docs": {}, "df": 0, "j": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.23606797749979}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 2}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.4142135623730951}}, "df": 35}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 5}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}}}, "b": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 29}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 6}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.449489742783178}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.get_copies": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 2}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 2}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4.358898943540674}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.449489742783178}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1.7320508075688772}}, "df": 40}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.449489742783178}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.get_copies": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 2}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.449489742783178}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.449489742783178}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 2}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4.358898943540674}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.449489742783178}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1.7320508075688772}}, "df": 43}}}}}}, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.6457513110645907}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 13, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4.123105625617661}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 17}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.449489742783178}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.449489742783178}}, "df": 3}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 4.123105625617661}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 23}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 29}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.8284271247461903}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 52}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}}, "df": 17}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 3}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 2}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 3}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 2}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 2}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 2}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 2.23606797749979}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 2.23606797749979}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 26}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 4, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2.449489742783178}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.449489742783178}}, "df": 3}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 8}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}, "geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 24}}}}, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.449489742783178}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {"geneticalgorithm2.selections.Selection.tournament": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 8, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 21}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 2.449489742783178}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 21}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1}}, "df": 9}}, "m": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 2}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 5, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 2}}, "t": {"docs": {"geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 2}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 17}}}}}}}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "p": {"1": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 1}, "2": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {"geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 8}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 6}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"geneticalgorithm2.crossovers.get_copies": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1}}, "df": 4}}}}}}, "doc": {"root": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}, "1": {"0": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "2": {"0": {"0": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 4, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "3": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}, "4": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}, "5": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 1, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 3}}, "8": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}, "docs": {"geneticalgorithm2": {"tf": 3.3166247903554}, "geneticalgorithm2.geneticalgorithm2": {"tf": 1.7320508075688772}, "geneticalgorithm2.Population_initializer": {"tf": 5.385164807134504}, "geneticalgorithm2.callbacks": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.reason_to_stop": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.last_generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.report_list": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_prob": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete_prob": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.mutation_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.crossover": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.selection": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.current_stagnation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.max_stagnation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.parents_portion": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.elit_ratio": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackData.set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 2}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 2}, "geneticalgorithm2.callbacks.middle": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 4.69041575982343}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.EachGen": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.AfterStagnation": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 4.898979485566356}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.ReduceMutationGen": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.GeneDiversityStats": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.simple": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.NoneCallback": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 5.916079783099616}, "geneticalgorithm2.crossovers": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 2}, "geneticalgorithm2.crossovers.get_copies": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1.4142135623730951}, "geneticalgorithm2.crossovers.Crossover.crossovers_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.one_point": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.two_point": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.uniform": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.segment": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.shuffle": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.uniform_window": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.arithmetic": {"tf": 1.7320508075688772}, "geneticalgorithm2.crossovers.Crossover.mixed": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.population_size": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_probability": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_probability": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_probability": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.elit_ratio": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.parents_portion": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.crossover_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.selection_type": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.validate": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 2.8284271247461903}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.update": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.from_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.aliases": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 3}, "geneticalgorithm2.data_types.base": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.base.DictLikeGetSet": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.base.DictLikeGetSet.get": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 3.1622776601683795}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.variables": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.scores": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.size": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.dim_size": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.as_wide_matrix": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.save": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.load": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation.from_pop_matrix": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.__init__": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.last_generation": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.variable": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.score": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.result.GAResult.function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 7.3484692283495345}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_params": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.output_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.f": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.funtimeout": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.var_bounds": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.checked_reports": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.population_size": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.progress_stream": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.param": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.dim": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.prob_mut_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 10.677078252031311}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationFloatFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationIntFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 2.449489742783178}, "geneticalgorithm2.mutations.Mutations": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.mutations_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.mutations_discrete_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.uniform_by_x": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.uniform_by_center": {"tf": 1.7320508075688772}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.uniform_discrete": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 2.23606797749979}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 5.385164807134504}, "geneticalgorithm2.selections": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.roulette": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.Selection.selections_dict": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.roulette": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.stochastic": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.sigma_scaling": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.ranking": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.linear_ranking": {"tf": 1.7320508075688772}, "geneticalgorithm2.selections.Selection.tournament": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.Number": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.array1D": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.array2D": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.aliases.PathLike": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.cache": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 2}, "geneticalgorithm2.utils.files": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.files.mkdir_of_file": {"tf": 3.4641016151377544}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.files.touch": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.fast_max": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.can_be_prob": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.is_current_gen_number": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.is_numpy": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 2.23606797749979}, "geneticalgorithm2.utils.plotting": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_several_lines": {"tf": 1.7320508075688772}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1.4142135623730951}}, "df": 190, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.8284271247461903}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 7, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 2}}}, "a": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "l": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2, "d": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.23606797749979}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 18}, "y": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 7}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 6}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 4}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.8284271247461903}}, "df": 3, "s": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 6}}}}}}}, "l": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 3.3166247903554}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.8284271247461903}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 22, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}, "s": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 9}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.449489742783178}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 24, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 7}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.files.touch": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 3}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"1": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}, "2": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.6457513110645907}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2}}, "df": 16, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}}}}, "[": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 10, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}, "f": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 7}, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 9}, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 2}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.Population_initializer": {"tf": 2.23606797749979}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.8284271247461903}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3.1622776601683795}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.23606797749979}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 20}, "r": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 8, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 3}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 10}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}}, "df": 2, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 2}}, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "o": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.selections.Selection": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 5}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2}}, "df": 3}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}}, "df": 7}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.Stop": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 3, "s": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}, "geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 13}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 5}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}, "d": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}, "geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 9, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 4}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 8}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.generation.Generation": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": null}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"2": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"6": {"1": {"docs": {}, "df": 0, "f": {"4": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"0": {"1": {"1": {"5": {"0": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"1": {"docs": {}, "df": 0, "e": {"1": {"0": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"5": {"docs": {}, "df": 0, "f": {"0": {"0": {"5": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"7": {"5": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 9, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 3, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}}, "df": 1}, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"1": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}, "2": {"docs": {"geneticalgorithm2.crossovers.CrossoverFunc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.data_types.generation.Generation.from_object": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.mutations.Mutations": {"tf": 1}, "geneticalgorithm2.selections.Selection": {"tf": 1}}, "df": 9}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.crossovers.Crossover": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 9, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "n": {"docs": {"geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 2, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}, "r": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.Generation": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 6}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.ActionConditions.Always": {"tf": 1}, "geneticalgorithm2.utils.files.touch": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}, "x": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_iteration_without_improv": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 5}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut_middle": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 11, "s": {"docs": {"geneticalgorithm2.mutations.Mutations": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.utils.files.mkdir": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.All": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions.Any": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 9}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}, "l": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.ChangeRandomCrossover": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomSelection": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ChangeRandomMutation": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 3}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.selections.roulette": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}}, "df": 2, "c": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 4}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 2}, "geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.7320508075688772}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}}, "df": 2}}}}}}}}, "e": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "b": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}}, "df": 1, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2.6457513110645907}, "geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2.6457513110645907}}, "df": 6, "s": {"docs": {"geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.4142135623730951}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 2, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3}}, "df": 5}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.middle.Actions": {"tf": 1}, "geneticalgorithm2.callbacks.middle.ActionConditions": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 2, "o": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.data.MiddleCallbackConditionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.CopyBest": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.SavePopulation": {"tf": 1}, "geneticalgorithm2.callbacks.simple.Callbacks.PlotOptimizationProcess": {"tf": 1}, "geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 2}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 3}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.selections.SelectionFunc": {"tf": 1}, "geneticalgorithm2.selections.inverse_scores": {"tf": 1}, "geneticalgorithm2.utils.funcs.split_matrix": {"tf": 1}, "geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 22}, "h": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.ReduceMutationProb": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 2}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.max_num_iteration": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1.7320508075688772}, "geneticalgorithm2.data_types.generation.GenerationConvertible": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 3.872983346207417}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.PROGRESS_BAR_LEN": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.needs_mutation": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}, "geneticalgorithm2.selections.roulette": {"tf": 1}, "geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 18, "r": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.utils.files.touch": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"geneticalgorithm2.utils.funcs.fast_min": {"tf": 1}, "geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_type": {"tf": 1}, "geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.mutation_discrete_type": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 2.23606797749979}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 5, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.selections.Selection.fully_random": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.7320508075688772}}, "df": 4, "o": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2.23606797749979}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1.4142135623730951}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1.7320508075688772}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1.4142135623730951}}, "df": 5}}, "t": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_results": {"tf": 1}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.VARIABLE_TYPE": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.utils.plotting.plot_pop_scores": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1.4142135623730951}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 2}}, "s": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"geneticalgorithm2.data_types.algorithm_params.AlgorithmParams.get_CMS_funcs": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "z": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.Population_initializer": {"tf": 2}, "geneticalgorithm2.population_initializer.PopulationModifier": {"tf": 1}, "geneticalgorithm2.population_initializer.LOCAL_OPTIMIZATION_STEP_CASE": {"tf": 2}, "geneticalgorithm2.population_initializer.get_population_initializer": {"tf": 2}}, "df": 4}}}, "g": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 2}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.PlotPopulationScores": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 5}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.fill_children": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.SimpleCallbackFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 2}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.plot_generation_scores": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"geneticalgorithm2.utils.funcs.random_indexes_pair": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}}, "df": 1, "+": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {"geneticalgorithm2.utils.cache.np_lru_cache": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackData": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {"geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 2, "s": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 2}, "d": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.data_types.aliases.FunctionToMinimize": {"tf": 1}, "geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {"geneticalgorithm2.data_types.aliases.SetFunctionToMinimize": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1.4142135623730951}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"geneticalgorithm2.callbacks.middle.MiddleCallbacks.UniversalCallback": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.__init__": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"geneticalgorithm2.utils.funcs.union_to_matrix": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"geneticalgorithm2.callbacks.data.MiddleCallbackActionFunc": {"tf": 1}, "geneticalgorithm2.callbacks.middle.Actions.RemoveDuplicates": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.run": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.mut": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.default_set_function": {"tf": 1}, "geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.vectorized_set_function": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"geneticalgorithm2.geneticalgorithm2.GeneticAlgorithm2.set_function_multiprocess": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {"geneticalgorithm2.mutations.MutationFunc": {"tf": 1.4142135623730951}, "geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}}, "df": 2}, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"geneticalgorithm2.mutations.Mutations.gauss_by_x": {"tf": 1}, "geneticalgorithm2.mutations.Mutations.gauss_by_center": {"tf": 1}}, "df": 2}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true};
// mirrored in build-search-index.js (part 1)
// Also split on html tags. this is a cheap heuristic, but good enough.