You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm not sure if this is the best place for such a discussion, but I am having issues with divergence and wonder if it stems from how I have formulated my feature set. My feature set consists of random perceptrons ie. sigmoidal functions with weights drawn from a standard normal. This design comes from a paper I am studying on how to compress distributions. I have tried different sizes (n = 5 to n = 500) of this feature set to reconstruct a simple uniform discrete distribution, but I am getting divergence errors in all cases. Do you have any intuition for why my features would be ill-defined? If this is best discussed over email, you can reach me at [email protected].
Thank you
The text was updated successfully, but these errors were encountered:
Hello,
I'm not sure if this is the best place for such a discussion, but I am having issues with divergence and wonder if it stems from how I have formulated my feature set. My feature set consists of random perceptrons ie. sigmoidal functions with weights drawn from a standard normal. This design comes from a paper I am studying on how to compress distributions. I have tried different sizes (n = 5 to n = 500) of this feature set to reconstruct a simple uniform discrete distribution, but I am getting divergence errors in all cases. Do you have any intuition for why my features would be ill-defined? If this is best discussed over email, you can reach me at [email protected].
Thank you
The text was updated successfully, but these errors were encountered: