-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnn_prediction_model_skizo.py
687 lines (549 loc) · 29 KB
/
nn_prediction_model_skizo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
from sklearn.cluster import KMeans
import scipy.cluster.hierarchy as sch
from sklearn.cluster import AgglomerativeClustering
from sklearn import cluster
from sklearn.mixture import GaussianMixture
from sklearn.preprocessing import power_transform
import umap
from scipy.stats.stats import pearsonr
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances, manhattan_distances, pairwise_distances
from scipy import stats
from scipy.spatial import distance
from statsmodels.stats.multitest import multipletests
import pandas as pd
import seaborn as sns
from sklearn.decomposition import PCA
from collections import defaultdict
import matplotlib
import matplotlib.pyplot as plt
import random
import copy
import scipy
from scipy import stats
plt.style.use('seaborn-whitegrid')
import os, sys
import torch
import numpy as np
from torch.utils import data
import re
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.utils.data import DataLoader, WeightedRandomSampler, Dataset
from torch.utils.data.dataset import TensorDataset
from sklearn.cluster import SpectralClustering
from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn.decomposition import PCA
from itertools import combinations
import math
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_curve, auc, precision_score, recall_score, roc_auc_score, matthews_corrcoef
from sklearn.model_selection import train_test_split
from sklearn.model_selection import RandomizedSearchCV
from sklearn.preprocessing import label_binarize
from sklearn.metrics import confusion_matrix
from scipy import interp
import pickle
from itertools import cycle
## Functions
class ClassifierDataset(Dataset):
def __init__(self, X_data, y_data):
self.X_data = X_data
self.y_data = y_data
def __getitem__(self, index):
return self.X_data[index], self.y_data[index]
def __len__ (self):
return len(self.X_data)
class MulticlassClassification(nn.Module):
def __init__(self, num_feature, num_class, num_hidden1, num_hidden2):
super(MulticlassClassification, self).__init__()
self.layer_1 = nn.Linear(num_feature, num_hidden1)
self.layer_2 = nn.Linear(num_hidden1, num_hidden2)
#self.layer_3 = nn.Linear(64, 32)
self.layer_out = nn.Linear(num_hidden2, num_class)
self.relu = nn.LeakyReLU()
self.dropout = nn.Dropout(p=0.1)
self.batchnorm1 = nn.BatchNorm1d(num_hidden1)
self.batchnorm2 = nn.BatchNorm1d(num_hidden2)
#self.batchnorm3 = nn.BatchNorm1d(32)
def forward(self, x):
x = self.layer_1(x)
x = self.batchnorm1(x)
x = self.relu(x)
x = self.layer_2(x)
x = self.batchnorm2(x)
x = self.relu(x)
x = self.dropout(x)
#x = self.layer_3(x)
#x = self.batchnorm3(x)
#x = self.relu(x)
#x = self.dropout(x)
x = self.layer_out(x)
return x
def multi_acc(y_pred, y_test):
y_pred_softmax = torch.log_softmax(y_pred, dim = 1)
_, y_pred_tags = torch.max(y_pred_softmax, dim = 1)
correct_pred = (y_pred_tags == y_test).float()
acc = correct_pred.sum() / len(correct_pred)
acc = torch.round(acc) * 100
return acc, y_pred_softmax, y_pred_tags
def evaluate_model_nn(predictions, probs, test_labels, labels_name, f_name=None, colors=None):
"""Compare machine learning model to baseline performance.
Computes statistics and shows ROC curve."""
baseline = {}
baseline['roc'] = 0.5
results = {}
results['recall'] = recall_score(test_labels, predictions, average='micro')
results['precision'] = precision_score(test_labels, predictions, average='micro')
#results['roc'] = roc_auc_score(test_labels, probs)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
probs_list = []
mcc = dict()
n_classes = probs.shape[1]
y = label_binarize(test_labels, classes=np.unique(test_labels))
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y[:, i], probs[:,i])
roc_auc[i] = auc(fpr[i], tpr[i])
#mcc[i] = matthews_corrcoef(test_labels[test_labels == i], predictions[test_labels == i])
results[i] = roc_auc[i]
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y.ravel(), np.array(probs).ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
results['roc'] = roc_auc["micro"]
if f_name != None:
plt.figure(figsize = (12, 10))
plt.style.use('seaborn-whitegrid')
plt.rcParams['font.size'] = 14
lw = 2
plt.plot(fpr["micro"], tpr["micro"], color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc["micro"])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="lower right")
plt.style.use('seaborn-whitegrid')
plt.savefig(f_name + '.pdf', format = 'pdf', dpi = 800)
# Plot test across classes
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
if f_name != None:
# Plot all ROC curves
plt.figure(figsize = (12, 10))
plt.style.use('seaborn-whitegrid')
plt.plot(fpr["micro"], tpr["micro"], color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc["micro"])
s_names = np.sort(labels_name)
for n, color in zip(s_names, colors):
i = list(labels_name).index(n)
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(n, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="lower right")
plt.style.use('seaborn-whitegrid')
plt.savefig(f_name + '_all.pdf', format = 'pdf', dpi = 800)
return results
path = "/"
sys.path.append(path)
import intVAE_v1_5
from plots import embedding_plot_discrete, embedding_plot_float, plot_error
from read_files import encode_binary, encode_cat, encode_con, remove_not_obs_cat, remove_not_obs_ordinal, read_cat, read_con, read_header
## load pheno data categorical
F_pheno_cat, F_pheno_input = read_cat(path + "/data_encoded/input/pheno_F_int.npy")
F_pheno_h_cat = read_header(path + "/data_encoded/phenotypes_age/pheno_F_headers_age.txt")
# select for depression
skitzo = F_pheno_cat[:,list(F_pheno_h_cat).index("age_F2000")]
skitzo_class = np.argmax(skitzo, 1)
dep = F_pheno_cat[:,list(F_pheno_h_cat).index("age_F3000")]
dep_class = np.argmax(dep, 1)
F_pheno = read_con(path + "/data_encoded/input/pheno_F_con.npy")
F_pheno = F_pheno[skitzo_class != 0]
F_pheno, mask_F = encode_con(F_pheno, 0.01)
F_pheno_h = read_header(path + "/data_encoded/phenotypes_age/pheno_F_headers_con.txt", mask_F)
tmp_raw = read_con(path + "/data_encoded/input/pheno_F_con.npy")
con_all_raw = tmp_raw[:,mask_F]
tmp_h = [i for i in F_pheno_h if not i.startswith('age_F')]
other_LPR = F_pheno[:,np.where(np.isin(F_pheno_h,tmp_h))].reshape(F_pheno.shape[0],len(tmp_h))
other_LPR_h = F_pheno_h[np.where(np.isin(F_pheno_h,tmp_h))]
other_raw = con_all_raw[:,np.where(np.isin(F_pheno_h,tmp_h))].reshape(con_all_raw.shape[0],len(tmp_h))
tmp_h = [i for i in F_pheno_h if i.startswith('age_F')]
F_pheno = F_pheno[:,np.where(np.isin(F_pheno_h,tmp_h))].reshape(F_pheno.shape[0],len(tmp_h))
con_all_raw = con_all_raw[:,np.where(np.isin(F_pheno_h,tmp_h))].reshape(con_all_raw.shape[0],len(tmp_h))
F_pheno_h = F_pheno_h[np.where(np.isin(F_pheno_h,tmp_h))]
## load in continuous pheno data
severity_pheno = read_con(path + "/data_encoded/input/sev_con.npy")
severity_pheno = severity_pheno[skitzo_class != 0]
severity_pheno, mask = encode_con(severity_pheno, 0.01)
severity_pheno_h = read_header(path + "/data_encoded/phenotypes_age/sev_con_headers.txt", mask)
tmp_raw = read_con(path + "/data_encoded/input/sev_con.npy")
con_all_raw = np.concatenate((con_all_raw, tmp_raw[:,mask]), axis=1)
mbr = read_con(path + "/data_encoded/input/mbr_con_age.npy")
mbr = mbr[skitzo_class != 0]
mbr, mask = encode_con(mbr, 0.01)
mbr_h = read_header(path + "/data_encoded/phenotypes_age/mbr_con_headers_age.txt", mask)
tmp_raw = read_con(path + "/data_encoded/input/mbr_con_age.npy")
tmp_raw = tmp_raw[:,mask]
con_all_raw = np.concatenate((con_all_raw, tmp_raw), axis=1)
LPR = read_con(path + "/data_encoded/input/other_LPR_con.npy")
LPR = LPR[skitzo_class != 0]
LPR, mask = encode_con(LPR, 0.01)
LPR_h = read_header(path + "/data_encoded/phenotypes_age/other_LPR_headers_con.txt", mask)
LPR = np.concatenate((LPR, other_LPR), axis=1)
LPR_h = np.concatenate((LPR_h, other_LPR_h))
tmp_raw = read_con(path + "/data_encoded/input/other_LPR_con.npy")
con_all_raw = np.concatenate((con_all_raw, tmp_raw[:,mask]), axis=1)
con_all_raw = np.concatenate((con_all_raw, other_raw), axis=1)
con_all_raw = con_all_raw[skitzo_class != 0]
## load pheno data categorical
MBR_pheno, MBR_pheno_input = read_cat(path + "/data_encoded/input/mbr_cat_age.npy")
MBR_pheno = MBR_pheno[skitzo_class != 0]
MBR_pheno_input = MBR_pheno_input[skitzo_class != 0]
MBR_pheno_h = read_header(path + "/data_encoded/phenotypes_age/mbr_cat_headers_age.txt")
MBR_pheno, MBR_pheno_input, MBR_pheno_h = remove_not_obs_cat(MBR_pheno, MBR_pheno_input, MBR_pheno_h, 0.01)
sibling_pheno, sibling_pheno_input = read_cat(path + "/data_encoded/input/sibling_cat.npy")
sibling_pheno = sibling_pheno[skitzo_class != 0]
sibling_pheno_input = sibling_pheno_input[skitzo_class != 0]
sibling_pheno_h = read_header(path + "/data_encoded/phenotypes_age/sibling_cat_headers.txt")
sibling_pheno, sibling_pheno_input, sibling_pheno_h = remove_not_obs_cat(sibling_pheno, sibling_pheno_input, sibling_pheno_h, 0.01)
sibling_pheno = np.compress((sibling_pheno!=0).sum(axis=(0,1)), sibling_pheno, axis=2)
# combine MBR and sibling
#MBR_sibling = np.concatenate((MBR_pheno, sibling_pheno), axis=1)
#MBR_sibling_h = np.concatenate((MBR_pheno_h, sibling_pheno_h))
## load in genotype
geno, geno_input = read_cat(path + "/data_encoded/input/genotypes_all.npy")
geno = geno[skitzo_class != 0]
geno_input = geno_input[skitzo_class != 0]
geno_h = read_header(path + "/data_encoded/genomics/genotypes_headers_all.txt")
geno, geno_input, geno_h = remove_not_obs_ordinal(geno, geno_input, geno_h, 0.01)
hla_pheno, hla_pheno_input = read_cat(path + "/data_encoded/input/geno_hla.npy")
hla_pheno = hla_pheno[skitzo_class != 0]
hla_pheno_input = hla_pheno_input[skitzo_class != 0]
hla_pheno_h = read_header(path + "/data_encoded/genomics/geno_hla_headers.txt")
hla_pheno, hla_pheno_input, hla_pheno_h = remove_not_obs_ordinal(hla_pheno, hla_pheno_input, hla_pheno_h, 0.01)
# Load binary LPR diagnosis
f_LPR = read_con(path + "/data_encoded/input/father_LPR_con.npy")
f_LPR = f_LPR[skitzo_class != 0]
f_LPR, f_LPR_input, mask = encode_binary(f_LPR, 0.01)
#f_LPR,mask = encode_con(f_LPR, 0.01)
f_LPR_h = read_header(path + "/data_encoded/phenotypes_age/father_LPR_headers_con.txt", mask)
m_LPR = read_con(path + "/data_encoded/input/mother_LPR_con.npy")
m_LPR = m_LPR[skitzo_class != 0]
m_LPR, m_LPR_input, mask = encode_binary(m_LPR, 0.01)
#m_LPR, mask = encode_con(m_LPR, 0.01)
m_LPR_h = read_header(path + "/data_encoded/phenotypes_age/mother_LPR_headers_con.txt", mask)
# combine parents and sibling
family_LPR = np.concatenate((f_LPR, m_LPR, sibling_pheno), axis=1)
family_LPR_h = np.concatenate((f_LPR_h, m_LPR_h, sibling_pheno_h))
family_LPR_input = np.concatenate((f_LPR_input, m_LPR_input, sibling_pheno_input), axis=1)
analysis_type = "skitzo"
version = "v2"
sns.set(font_scale=1.5)
plt.style.use('seaborn-whitegrid')
# Prepare data
mbr_geno = np.concatenate((MBR_pheno, hla_pheno, geno), axis=1)
mbr_geno_h = np.concatenate((MBR_pheno_h, hla_pheno_h, geno_h))
mbr_geno_input = np.concatenate((MBR_pheno_input, hla_pheno_input, geno_input), axis=1)
cat_names = np.concatenate((family_LPR_h, MBR_pheno_h, hla_pheno_h, geno_h))
con_names = np.concatenate((F_pheno_h, severity_pheno_h, mbr_h, LPR_h))
all = np.concatenate((F_pheno, severity_pheno, mbr, LPR, family_LPR_input,mbr_geno_input), axis=1)
data_df = pd.DataFrame(all, columns = np.concatenate((con_names,cat_names)))
labels = np.load(path + "/clustering/" + analysis_type + "/labels_kmeans_" + version + ".npy")
y = label_binarize(labels, classes=np.unique(labels))
n_classes = y.shape[1]
labels_name = ["C-SCZ3", "C-SCZ5", "C-SCZ2", "C-SCZ4", "C-SCZ1", "C-SCZ6", "C-SCZ7"]
old_labels = list(np.unique(labels))
labels_names = []
for l in labels:
labels_names.append(labels_name[old_labels.index(l)])
##### Remove data after diagnosis ####
first_age_scz = con_all_raw[:,list(F_pheno_h).index("age_F2001")]
first_age_mdd1 = con_all_raw[:,list(F_pheno_h).index("age_F3200")]
first_age_mdd2 = con_all_raw[:,list(F_pheno_h).index("age_F3300")]
first_age = []
for i in range(len(first_age_scz)):
if first_age_scz[i] == 0:
if first_age_mdd1[i] == 0 and first_age_mdd2[i] == 0:
first_age.append(100)
else:
a = np.array([first_age_mdd1[i], first_age_mdd2[i]])
first_age.append(np.min(a[np.nonzero(a)]))
else:
first_age.append(first_age_scz[i])
all_raw = np.concatenate((con_all_raw, family_LPR_input, mbr_geno_input), axis=1)
data_df_raw = pd.DataFrame(all_raw, columns = np.concatenate((con_names,cat_names)))
filtered = []
tmp_data = data_df_raw[np.concatenate((F_pheno_h, LPR_h))]
for j in range(len(first_age_scz)):
p = tmp_data.loc[j,:]
p[p >= first_age[j]] = 0
filtered.append(np.array(p))
filtered_enc, mask_enc = encode_con(np.array(filtered), 0.0001)
filtered_h = np.concatenate((F_pheno_h, LPR_h))[mask_enc]
data_filtered_h = np.concatenate((filtered_h, mbr_h, family_LPR_h, mbr_geno_h))
data_filtered = np.concatenate((filtered_enc, mbr, family_LPR_input, mbr_geno_input), axis=1)
data_df_filtered = pd.DataFrame(data_filtered, columns = data_filtered_h)
RSEED = 42
train_filtered, test_filtered, train_labels_filtered, test_labels_filtered = train_test_split(data_df_filtered, labels.astype(int),
stratify = labels.astype(int),
test_size = 0.2,
random_state = RSEED)
train_filtered, val_filtered, train_labels_filtered, val_labels_filtered = train_test_split(train_filtered, train_labels_filtered,
stratify = train_labels_filtered,
test_size = 0.1,
random_state = RSEED)
EPOCHS = 200
NUM_FEATURES = len(data_df_filtered.columns)
NUM_CLASSES = len(np.unique(labels))
train_dataset_filtered = ClassifierDataset(torch.from_numpy(np.array(train_filtered)).float(), torch.from_numpy(train_labels_filtered).long())
val_dataset_filtered = ClassifierDataset(torch.from_numpy(np.array(val_filtered)).float(), torch.from_numpy(val_labels_filtered).long())
test_dataset_filtered = ClassifierDataset(torch.from_numpy(np.array(test_filtered)).float(), torch.from_numpy(test_labels_filtered).long())
# weighted sampler
target_list_filtered = []
for _, t in train_dataset_filtered:
target_list_filtered.append(t)
target_list_filtered = torch.tensor(target_list_filtered)
target_list_filtered = target_list_filtered[torch.randperm(len(target_list_filtered))]
class_count = np.bincount(labels.astype(int))
class_weights = 1./torch.tensor(class_count, dtype=torch.float)
class_weights_all_filtered = class_weights[target_list_filtered]
weighted_sampler_filtered = WeightedRandomSampler(
weights=class_weights_all_filtered,
num_samples=len(class_weights_all_filtered),
replacement=True)
val_loader_filtered = DataLoader(dataset=val_dataset_filtered, batch_size=1)
test_loader_filtered = DataLoader(dataset=test_dataset_filtered, batch_size=1)
cuda = False
device = torch.device("cuda" if cuda == True else "cpu")
criterion = nn.CrossEntropyLoss(weight=class_weights.to(device))
val_loss_min = 1000
best_hyp = []
batch_sizes = [5, 10, 20, 25]
learning_rates = [0.001, 0.0001]
num_hiddens = [[64, 32], [128, 64], [256, 128]]
for BATCH_SIZE in batch_sizes:
for LEARNING_RATE in learning_rates:
for num_hidden in num_hiddens:
num_hidden1 = num_hidden[0]
num_hidden2 = num_hidden[1]
train_loader_filtered = DataLoader(dataset=train_dataset_filtered,
batch_size=BATCH_SIZE,
sampler=weighted_sampler_filtered)
model_filtered = MulticlassClassification(num_feature = NUM_FEATURES, num_class=NUM_CLASSES, num_hidden1=num_hidden1, num_hidden2=num_hidden2)
model_filtered.to(device)
criterion = nn.CrossEntropyLoss(weight=class_weights.to(device))
optimizer = optim.Adam(model_filtered.parameters(), lr=LEARNING_RATE)
accuracy_stats_filtered = {'train': [],"val": []}
loss_stats_filtered = {'train': [],"val": []}
for e in range(1, EPOCHS+1):
# TRAINING
train_epoch_loss = 0
train_epoch_acc = 0
model_filtered.train()
for X_train_batch, y_train_batch in train_loader_filtered:
X_train_batch, y_train_batch = X_train_batch.to(device), y_train_batch.to(device)
optimizer.zero_grad()
y_train_pred = model_filtered(X_train_batch)
train_loss = criterion(y_train_pred, y_train_batch)
train_acc, softmax_pred, correct_pred = multi_acc(y_train_pred, y_train_batch)
train_loss.backward()
optimizer.step()
train_epoch_loss += train_loss.item()
train_epoch_acc += train_acc.item()
# VALIDATION
with torch.no_grad():
val_epoch_loss = 0
val_epoch_acc = 0
model_filtered.eval()
for X_val_batch, y_val_batch in val_loader_filtered:
X_val_batch, y_val_batch = X_val_batch.to(device), y_val_batch.to(device)
y_val_pred = model_filtered(X_val_batch)
val_loss = criterion(y_val_pred, y_val_batch)
val_acc, softmax_pred, correct_pred = multi_acc(y_val_pred, y_val_batch)
val_epoch_loss += val_loss.item()
val_epoch_acc += val_acc.item()
if val_loss_min > (val_epoch_loss/len(val_loader_filtered)):
val_loss_min = val_epoch_loss/len(val_loader_filtered)
best_hyp = [BATCH_SIZE, LEARNING_RATE, num_hidden]
best_model_filtered = copy.deepcopy(model_filtered)
loss_stats_filtered['train'].append(train_epoch_loss/len(train_loader_filtered))
loss_stats_filtered['val'].append(val_epoch_loss/len(val_loader_filtered))
accuracy_stats_filtered['train'].append(train_epoch_acc/len(train_loader_filtered))
accuracy_stats_filtered['val'].append(val_epoch_acc/len(val_loader_filtered))
print('Epoch ' + str(e) + ' | Train Loss: ' + str(train_epoch_loss/len(train_loader_filtered)) + ' | Val Loss: ' + str(val_epoch_loss/len(val_loader_filtered)) + ' | Train Acc: ' + str(train_epoch_acc/len(train_loader_filtered)) + ' | Val Acc: ' + str(val_epoch_acc/len(val_loader_filtered)))
with torch.no_grad():
test_epoch_loss = 0
test_epoch_acc = 0
predictions_filtered = []
probs_filtered = []
best_model_filtered.eval()
for X_val_batch, y_val_batch in test_loader_filtered:
X_val_batch, y_val_batch = X_val_batch.to(device), y_val_batch.to(device)
y_val_pred = best_model_filtered(X_val_batch)
test_loss = criterion(y_val_pred, y_val_batch)
test_acc, softmax_pred, correct_pred = multi_acc(y_val_pred, y_val_batch)
test_epoch_loss += test_loss.item()
test_epoch_acc += test_acc.item()
predictions_filtered.append(int(correct_pred))
probs_filtered.append(np.array(y_val_pred).ravel())
test_loss_filtered = test_epoch_loss / len(test_loader_filtered)
test_acc_filtered = test_epoch_acc / len(test_loader_filtered)
colors = cycle(['lightskyblue','royalblue', 'darkblue', 'salmon', 'red', 'crimson', 'maroon'])
f_name = path + "/prediction/" + analysis_type + "/nn_roc_filtered_" + version + "_" + analysis_type
test_eval_filtered = evaluate_model_nn(np.array(predictions_filtered), np.array(probs_filtered), test_labels_filtered, labels_name, f_name, colors)
mcc_all_filtered = matthews_corrcoef(test_labels_filtered, np.array(predictions_filtered))
# Get SHAP values
acc_diffs = []
mcc_diffs = []
auc_diffs = []
cluster_diffs_auc = defaultdict(list)
cluster_diffs_mcc = defaultdict(list)
for feature_index in range(NUM_FEATURES):
new_data = np.copy(test_loader_filtered.dataset.X_data)
new_data[:,feature_index] = 0
new_data = torch.from_numpy(new_data)
dataset = ClassifierDataset(new_data, torch.from_numpy(test_labels_filtered).long())
new_loader = DataLoader(dataset=dataset, batch_size=1)
with torch.no_grad():
test_epoch_acc = 0
test_epoch_acc_clust = defaultdict(list)
probs_filtered_shap = []
predictions_filtered_shap = []
best_model_filtered.eval()
for X_val_batch, y_val_batch in new_loader:
X_val_batch, y_val_batch = X_val_batch.to(device), y_val_batch.to(device)
y_val_pred = best_model_filtered(X_val_batch)
test_acc, softmax_pred, correct_pred = multi_acc(y_val_pred, y_val_batch)
test_epoch_acc += test_acc.item()
predictions_filtered_shap.append(int(correct_pred))
probs_filtered_shap.append(np.array(softmax_pred).ravel())
test_acc_filtered_shap = test_epoch_acc / len(test_loader_filtered)
acc_diffs.append(np.abs(test_acc_filtered-test_acc_filtered_shap))
test_mcc = matthews_corrcoef(test_labels_filtered, np.array(predictions_filtered_shap))
mcc_diffs.append(np.abs(mcc_all_filtered-test_mcc))
test_eval_filtered_shap = evaluate_model_nn(np.array(predictions_filtered), np.array(probs_filtered), test_labels_filtered, labels_name)
auc_diffs.append(np.abs(test_eval_filtered['roc'] - test_eval_filtered_shap['roc']))
for c in np.unique(labels):
c = int(c)
cluster_diffs_auc[c].append(np.abs(test_eval_filtered[c] - test_eval_filtered_shap[c]))
fi_filtered = pd.DataFrame({'feature': list(train_filtered.columns),
'importance': acc_diffs}).\
sort_values('importance', ascending = False)
# Fraction explained
feature_imp_filtered = fi_filtered[fi_filtered['importance'] > 0]
other_h = [i for i in filtered_h if i in LPR_h]
mental_h = [i for i in filtered_h if i in F_pheno_h]
data_names = [mental_h, other_h, np.concatenate((mbr_h,MBR_pheno_h)), family_LPR_h, geno_h, hla_pheno_h]
title_data = ['Psychiatric disorders', 'Other medical conditions', 'MBR', 'Family diagnoses', 'Genomics', 'HLA data']
colors_u = ['#EC1C1C','#E06161', '#FF9B9B', '#84C3F7', '#4387BF', '#2669A1']
bar_colors = []
data_names = [mental_h, other_h, np.concatenate((mbr_h,MBR_pheno_h)), family_LPR_h, geno_h, hla_pheno_h]
for k in feature_imp_filtered.iloc[0:25]['feature']:
j = 0
for dn in data_names:
if k in dn:
bar_colors.append(colors_u[j])
break
j += 1
bar_colors_all = dict()
for i,dn in enumerate(data_names):
bar_colors_all[title_data[i]] = colors_u[i]
feature_imp_filtered = fi_filtered[fi_filtered['importance'] > 0]
f_name = path + "/prediction/" + analysis_type + "/nn_feature_importance_filtered_" + version + "_" + analysis_type
#bar_colors = cycle(bar_colors)
fig = plt.figure(figsize=(14,10))
plt.style.use('seaborn-whitegrid')
g = sns.barplot(data=feature_imp_filtered.iloc[0:25], y='importance', x='feature', palette=bar_colors)
# Add labels to your graph
plt.ylabel('Feature importance score')
plt.xlabel('Features')
plt.style.use('seaborn-whitegrid')
g.set_xticklabels(g.xaxis.get_majorticklabels(), rotation=90)
fig.subplots_adjust(bottom=0.4)
plt.savefig(f_name + ".pdf", format = 'pdf', dpi = 800)
# Confusion matrix
cmap = sns.diverging_palette(220, 20, sep=10, as_cmap=True)
sns.set(font_scale=1.5)
plt.style.use('seaborn-whitegrid')
f_name = path + "/prediction/" + analysis_type + "/nn_confusion_matrix_filtered_" + version + "_" + analysis_type
conf_mat = confusion_matrix(test_labels_filtered, np.array(predictions_filtered))
conf_mat = pd.DataFrame(conf_mat, labels_name, labels_name)
conf_mat = conf_mat.sort_index()
conf_mat = conf_mat.T.sort_index()
fig = plt.figure(figsize=(14,10))
g = sns.heatmap(conf_mat, annot=True, annot_kws={"size": 16}, cmap=cmap, fmt = 'd', center = 0) # font size
bottom, top = g.get_ylim()
g.set_ylim(bottom + 0.5, top - 0.5)
plt.ylabel('True labels')
plt.xlabel('Predicted labels')
g.set_xticklabels(g.xaxis.get_majorticklabels(), rotation=30)
g.set_yticklabels(g.yaxis.get_majorticklabels(), rotation=0)
fig.subplots_adjust(bottom=0.2)
plt.savefig(f_name + ".pdf", format = 'pdf', dpi = 800)
#### Get dataset SHAP
# Get SHAP values
data_names = [mental_h, other_h, np.concatenate((mbr_h,MBR_pheno_h)), family_LPR_h, geno_h, hla_pheno_h]
title_data = ['Psychiatric disorders', 'Other medical conditions', 'MBR', 'Family diagnoses', 'Genomics', 'HLA data']
acc_diffs_v2 = []
mcc_diffs_v2 = []
auc_diffs_v2 = []
cluster_diffs_auc_v2 = defaultdict(list)
for dn in data_names:
new_data = np.copy(test_loader_filtered.dataset.X_data)
new_data[:,np.where(np.isin(data_filtered_h, dn))] = 0
new_data = torch.from_numpy(new_data)
dataset = ClassifierDataset(new_data, torch.from_numpy(test_labels_filtered).long())
new_loader = DataLoader(dataset=dataset, batch_size=1)
with torch.no_grad():
test_epoch_acc = 0
test_epoch_acc_clust = defaultdict(list)
probs_filtered_shap = []
predictions_filtered_shap = []
best_model_filtered.eval()
for X_val_batch, y_val_batch in new_loader:
X_val_batch, y_val_batch = X_val_batch.to(device), y_val_batch.to(device)
y_val_pred = best_model_filtered(X_val_batch)
test_acc, softmax_pred, correct_pred = multi_acc(y_val_pred, y_val_batch)
test_epoch_acc += test_acc.item()
predictions_filtered_shap.append(int(correct_pred))
probs_filtered_shap.append(np.array(softmax_pred).ravel())
test_acc_filtered_shap = test_epoch_acc / len(test_loader_filtered)
acc_diffs_v2.append(np.abs(test_acc_filtered-test_acc_filtered_shap))
test_mcc = matthews_corrcoef(test_labels_filtered, np.array(predictions_filtered_shap))
mcc_diffs_v2.append(np.abs(mcc_all_filtered-test_mcc))
#mcc_diffs.append(mcc_all_filtered-test_mcc)
test_eval_filtered_shap = evaluate_model_nn(np.array(predictions_filtered), np.array(probs_filtered), test_labels_filtered, labels_name)
auc_diffs_v2.append(np.abs(test_eval_filtered['roc'] - test_eval_filtered_shap['roc']))
for c in np.unique(labels):
c = int(c)
cluster_diffs_auc_v2[c].append(np.abs(test_eval_filtered[c] - test_eval_filtered_shap[c]))
fi_filtered_v2 = pd.DataFrame({'feature': title_data,
'importance': acc_diffs_v2}).\
sort_values('importance', ascending = False)
f_name = path + "/prediction/" + analysis_type + "/nn_feature_importance_filtered_each_" + version + "_" + analysis_type
fig = plt.figure(figsize=(14,10))
plt.style.use('seaborn-whitegrid')
g = sns.barplot(data=fi_filtered_v2, y='importance', x='feature', palette=bar_colors_all)
# Add labels to your graph
plt.style.use('seaborn-whitegrid')
plt.ylabel('Average feature importance')
plt.xlabel('Dataset')
g.set_xticklabels(g.xaxis.get_majorticklabels(), rotation=90)
fig.subplots_adjust(bottom=0.4)
plt.savefig(f_name + ".pdf", format = 'pdf', dpi = 800)