-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo_object_detection.py
83 lines (64 loc) · 2.22 KB
/
yolo_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# If you use VSCode
from cv2 import cv2
# else
# import cv2
import numpy as np
import random
import matplotlib.pyplot as plt
# Load Yolo
net = cv2.dnn.readNetFromDarknet("cfg/yolov3_garb_test2.cfg",r"weights/garb.weights")
# Name custom object
classes = open(".names/garb2.names").read().strip().split("\n")
cap = cv2.VideoCapture("assets/plastic-test3.mp4")
print(cap)
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
# loop through them cap
while True:
# Loading frame
ret, img = cap.read()
height, width = img.shape[:2]
# Detecting objects
blob = cv2.dnn.blobFromImage(img, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.3:
# Object detected
print("ID da classe: ")
print(class_id)
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
print("Index: ")
print(indexes)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y + 30), font, 3, color, 2)
cv2.imshow("Frame", img)
if ord("q") == cv2.waitKey(1):
break
cap.release()
cv2.destroyAllWindows()