-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_mpcrl_v0.py
78 lines (62 loc) · 2.46 KB
/
test_mpcrl_v0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import glob
import hydra
import numpy as np
import gymnasium as gym
import highway_env
from trainers.trainer import RefSpeedTrainer
from config.config import build_env_config, build_mpcrl_agent_config, build_pure_mpc_agent_config
@hydra.main(config_name="cfg", config_path="./config", version_base="1.3")
def test_mpcrl(cfg):
# Specify algorithm directly here
algorithm = "ppo"
gym_env_config = build_env_config(cfg)
mpcrl_agent_config = build_mpcrl_agent_config(cfg, version="v0", algorithm=algorithm)
pure_mpc_agent_config = build_pure_mpc_agent_config(cfg)
# env
env = gym.make("intersection-v1", render_mode="human", config=gym_env_config)
trainer = RefSpeedTrainer(env, mpcrl_agent_config, pure_mpc_agent_config)
# # trainer.learn()
# # trainer.save()
# Find the latest saved model
save_dir = "./saved_models/mpcrl"
model_files = sorted(glob.glob(f"{save_dir}/*"), key=os.path.getmtime, reverse=True)
if not model_files:
raise FileNotFoundError(f"No saved models found in {save_dir}")
latest_model_path = model_files[0] # The most recently saved model
print(f"Loading latest model: {latest_model_path}")
# Load the latest model
trainer.load(
path=latest_model_path,
mpcrl_cfg=mpcrl_agent_config,
version="v0",
pure_mpc_cfg=pure_mpc_agent_config,
env=env,
)
print(trainer.model.policy)
observation, _ = env.reset()
for i in range(200):
action = trainer.predict(observation, False)
print('MPC acceleration:', action.acceleration)
observation, reward, done, truncated, info = env.step([action.acceleration/5, action.steer/(np.pi/3)])
print('reward:', reward)
env.render()
if __name__ == "__main__":
test_mpcrl()
# trainer.load(
# path=f"./weights/v0/test_{algorithm}_v0",
# mpcrl_cfg=mpcrl_agent_config,
# version="v0",
# pure_mpc_cfg=pure_mpc_agent_config,
# env=env,
# )
# print(trainer.model.policy)
# observation, _ = env.reset()
# for i in range(150):
# action = trainer.predict(observation, False)
# print('MPC acceleration:', action.acceleration)
# observation, reward, done, truncated, info = env.step([action.acceleration/5, action.steer/(np.pi/3)])
# print('reward:', reward)
# env.render()
# if __name__ == "__main__":
# test_mpcrl()