-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBrondata_UTM1_XYLink.R
150 lines (114 loc) · 3.83 KB
/
Brondata_UTM1_XYLink.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
####Basics#### Workingdirectory instellen, Data inlezen & Libraries laden
setwd(dir = "C://Users/sander_devisscher/Google Drive/EU_IAS/T0/Verspreidingskaartjes data")
library(dplyr)
library(foreign)
library(ggplot2)
Brondata <- read.csv("C:/Users/sander_devisscher/Google Drive/EU_IAS/T0/invasive-t0-occurrences/data/processed/invasive_EU_listed_and_considered_with_joins.tsv", header=TRUE)
UTM1 <- read.csv2("C:/Users/sander_devisscher/Google Drive/EU_IAS/T0/Verspreidingskaartjes data/UTM1.csv")
Brondata_Ruw <- Brondata
Brondata_Redux <- Brondata[c("euConcernStatus", "gis_utm1_code", "gbifapi_acceptedScientificName", "year")]
####Opsplitsen Volgens eulist status####
EuConc <- subset(Brondata_Redux, euConcernStatus == "listed")
EuPrep <- subset(Brondata_Redux, euConcernStatus == "under preparation")
EuCons <- subset(Brondata_Redux, euConcernStatus == "under consideration")
####Vereenvoudiging EUConcern####
temp <- subset(EuConc, !is.na(gis_utm1_code))
temp <- subset(EuConc, !is.na(gbifapi_acceptedScientificName))
temp <- subset(EuConc, !is.na(year))
temp7 <- data.frame()
UTM1_Hokken <- unique(temp$gis_utm1_code)
for(a in UTM1_Hokken){
temp2 <- subset(temp, gis_utm1_code == a)
soorten <- unique(temp2$gbifapi_acceptedScientificName)
for(b in soorten){
temp3 <- subset(temp2, gbifapi_acceptedScientificName == b)
temp4 <- temp3
aantalwnm <- nrow(temp4)
TAG <- a
soort <- b
temp5 <- data.frame(TAG, soort, aantalwnm)
temp6 <- merge(x = temp5, y = UTM1)
temp7 <- rbind(temp7, temp6)
}
}
write.dbf(temp7, "EuConc_UTM1_xyLink.dbf")
write.csv2(temp7, "EuConc_UTM1_xyLink.csv")
#Opkuis
remove(temp)
remove(temp2)
remove(temp3)
remove(temp4)
remove(temp5)
remove(temp6)
remove(a)
remove(b)
remove(c)
remove(d)
remove(jaar)
remove(jaren)
remove(soorten)
remove(TAG)
remove(UTM1_TAG)
####Species checkup####
#Sometimes there are errors in the dataset
#to enable to check the data from a single species
soorten <- unique(Brondata$gbifapi_acceptedScientificName)
print(soorten)
soort <- "Vespa velutina Lepeletier, 1836" #Choose the species to be examined
soortcode <- substr(soort, 1, 3)
fname <- paste("C://Users/sander_devisscher/Google Drive/EU_IAS/T0/Verspreidingskaartjes data/Speciesdata/", soortcode, ".dbf", sep="")
temp <- subset(Brondata, gbifapi_acceptedScientificName == soort)
write.csv2(temp, fname)
write.dbf(temp, fname)
remove(temp)
remove(soorten)
remove(soort)
remove(fname)
remove(soortcode)
####Gedetaileerd per soort####
soorten <- unique(EuConc$gbifapi_acceptedScientificName)
print(soorten)
soort <- "Hydrocotyle ranunculoides L. fil." #Choose the species to be examined
soortcode <- substr(soort, 1, 3)
fname <- paste("C://Users/sander_devisscher/Google Drive/EU_IAS/T0/Verspreidingskaartjes data/Speciesdata/", soortcode, ".dbf", sep="")
temp <- subset(EuConc, gbifapi_acceptedScientificName == soort)
#Tijdelijke tussenstap
Jaren <- c("2014","2015")
tempexport <- subset(temp, year == Jaren)
write.dbf(tempexport, fname)
#Einde tijdelijke tussenstap
n=0
temp3 <- data.frame(x=soort)
temp4 <- data.frame()
Jaren <- unique(temp$year)
for(j in Jaren){
temp2 <- subset(temp, year == j)
Hokken <- unique(temp2$gis_utm1_code)
for(h in Hokken){
n <- n + 1
}
temp3$hokken <- n
temp3$year <- j
temp3$soort <- soort
n = 0
temp4 <- rbind(temp4, temp3)
}
Brondata_Soort <- temp4
Brondata_Soort$x <- NULL
remove(temp)
remove(temp2)
remove(temp3)
remove(temp4)
remove(j)
remove(h)
remove(n)
remove(Hokken)
remove(Jaren)
#Relevante data voor grafieken selecteren
Jaren <- c("2014","2015","2016")
GRA_Data <- subset(Brondata_Soort, year == Jaren)
GRA_Data$year <- as.factor(GRA_Data$year)
plot <- ggplot(GRA_Data, aes(x=year, y=hokken))
plot <- plot + geom_bar(stat="identity")
plot <- plot + scale_x_discrete(expand = c(0, 0)) + scale_y_continuous(limits=c(0,NA),expand = c(0, 0))
print(plot)