-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtexturearray.cpp
544 lines (457 loc) · 22.5 KB
/
texturearray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
* Vulkan Example - Texture arrays and instanced rendering
*
* This sample shows how to load and render a texture array. This is a single layered texture where each layer contains different image data.
* The different layers are displayed on cubes using instancing, where each instance selects a different layer from the texture
*
* Copyright (C) 2016-2023 Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include <ktx.h>
#include <ktxvulkan.h>
#define MAX_LAYERS 8
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
};
class VulkanExample : public VulkanExampleBase
{
public:
// Number of array layers in texture array
// Also used as instance count
uint32_t layerCount{ 0 };
vks::Texture textureArray;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount{ 0 };
// Values passed to the shader per drawn instance
struct alignas(16) PerInstanceData {
// Model matrix
glm::mat4 model;
// Layer index from which this instance will sample in the fragment shader
float arrayIndex{ 0 };
};
struct UniformData {
// Global matrices
struct {
glm::mat4 projection;
glm::mat4 view;
} matrices;
// Separate data for each instance
PerInstanceData* instance{ nullptr };
} uniformData;
vks::Buffer uniformBuffer;
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VulkanExample() : VulkanExampleBase()
{
title = "Texture arrays";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -7.5f));
camera.setRotation(glm::vec3(-35.0f, 0.0f, 0.0f));
camera.setPerspective(45.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
if (device) {
vkDestroyImageView(device, textureArray.view, nullptr);
vkDestroyImage(device, textureArray.image, nullptr);
vkDestroySampler(device, textureArray.sampler, nullptr);
vkFreeMemory(device, textureArray.deviceMemory, nullptr);
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBuffer.destroy();
delete[] uniformData.instance;
}
}
void loadTextureArray(std::string filename, VkFormat format)
{
ktxResult result;
ktxTexture* ktxTexture;
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
if (!asset) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
}
size_t size = AAsset_getLength(asset);
assert(size > 0);
ktx_uint8_t *textureData = new ktx_uint8_t[size];
AAsset_read(asset, textureData, size);
AAsset_close(asset);
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
delete[] textureData;
#else
if (!vks::tools::fileExists(filename)) {
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1);
}
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
#endif
assert(result == KTX_SUCCESS);
// Get properties required for using and upload texture data from the ktx texture object
textureArray.width = ktxTexture->baseWidth;
textureArray.height = ktxTexture->baseHeight;
layerCount = ktxTexture->numLayers;
assert(layerCount <= MAX_LAYERS);
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = ktxTextureSize;
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, ktxTextureData, ktxTextureSize);
vkUnmapMemory(device, stagingMemory);
// Setup buffer copy regions for array layers
std::vector<VkBufferImageCopy> bufferCopyRegions;
// To keep this simple, we will only load layers and no mip level
for (uint32_t layer = 0; layer < layerCount; layer++)
{
// Calculate offset into staging buffer for the current array layer
ktx_size_t offset;
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, 0, layer, 0, &offset);
assert(ret == KTX_SUCCESS);
// Setup a buffer image copy structure for the current array layer
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = layer;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth;
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { textureArray.width, textureArray.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.arrayLayers = layerCount;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &textureArray.image));
vkGetImageMemoryRequirements(device, textureArray.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &textureArray.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, textureArray.image, textureArray.deviceMemory, 0));
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0;
subresourceRange.levelCount = 1;
subresourceRange.layerCount = layerCount;
vks::tools::setImageLayout(
copyCmd,
textureArray.image,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy the cube map faces from the staging buffer to the optimal tiled image
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
textureArray.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data());
// Change texture image layout to shader read after all faces have been copied
textureArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vks::tools::setImageLayout(
copyCmd,
textureArray.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
textureArray.imageLayout,
subresourceRange);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
// Create sampler
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 8;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &textureArray.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
view.format = format;
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = layerCount;
view.subresourceRange.levelCount = 1;
view.image = textureArray.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &textureArray.view));
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
ktxTexture_Destroy(ktxTexture);
}
void loadAssets()
{
loadTextureArray(getAssetPath() + "textures/texturearray_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, layerCount, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
// Creates a vertex and index buffer for a cube
// This is used to display the texture on
void generateCube()
{
std::vector<Vertex> vertices = {
{ { -1.0f, -1.0f, 1.0f }, { 0.0f, 0.0f } },
{ { 1.0f, -1.0f, 1.0f }, { 1.0f, 0.0f } },
{ { 1.0f, 1.0f, 1.0f }, { 1.0f, 1.0f } },
{ { -1.0f, 1.0f, 1.0f }, { 0.0f, 1.0f } },
{ { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f } },
{ { 1.0f, 1.0f, -1.0f }, { 1.0f, 0.0f } },
{ { 1.0f, -1.0f, -1.0f }, { 1.0f, 1.0f } },
{ { 1.0f, -1.0f, 1.0f }, { 0.0f, 1.0f } },
{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f } },
{ { 1.0f, -1.0f, -1.0f }, { 1.0f, 0.0f } },
{ { 1.0f, 1.0f, -1.0f }, { 1.0f, 1.0f } },
{ { -1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f } },
{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f } },
{ { -1.0f, -1.0f, 1.0f }, { 1.0f, 0.0f } },
{ { -1.0f, 1.0f, 1.0f }, { 1.0f, 1.0f } },
{ { -1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f } },
{ { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f } },
{ { -1.0f, 1.0f, 1.0f }, { 1.0f, 0.0f } },
{ { -1.0f, 1.0f, -1.0f }, { 1.0f, 1.0f } },
{ { 1.0f, 1.0f, -1.0f }, { 0.0f, 1.0f } },
{ { -1.0f, -1.0f, -1.0f }, { 0.0f, 0.0f } },
{ { 1.0f, -1.0f, -1.0f }, { 1.0f, 0.0f } },
{ { 1.0f, -1.0f, 1.0f }, { 1.0f, 1.0f } },
{ { -1.0f, -1.0f, 1.0f }, { 0.0f, 1.0f } },
};
std::vector<uint32_t> indices = {
0,1,2, 0,2,3, 4,5,6, 4,6,7, 8,9,10, 8,10,11, 12,13,14, 12,14,15, 16,17,18, 16,18,19, 20,21,22, 20,22,23
};
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers and upload data to the GPU
struct StagingBuffers {
vks::Buffer vertices;
vks::Buffer indices;
} stagingBuffers;
// Host visible source buffers (staging)
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.vertices, vertices.size() * sizeof(Vertex), vertices.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffers.indices, indices.size() * sizeof(uint32_t), indices.data()));
// Device local destination buffers
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex)));
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indices.size() * sizeof(uint32_t)));
// Copy from host do device
vulkanDevice->copyBuffer(&stagingBuffers.vertices, &vertexBuffer, queue);
vulkanDevice->copyBuffer(&stagingBuffers.indices, &indexBuffer, queue);
// Clean up
stagingBuffers.vertices.destroy();
stagingBuffers.indices.destroy();
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
// Image descriptor for the texture array
VkDescriptorImageInfo textureDescriptor =
vks::initializers::descriptorImageInfo(
textureArray.sampler,
textureArray.view,
textureArray.imageLayout);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
// Binding 1 : Fragment shader texture sampler
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables, 0);
// Vertex bindings and attributes
VkVertexInputBindingDescription vertexInputBinding = { 0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX };
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
{ 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos) },
{ 1, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv) },
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
// Instancing pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "texturearray/instancing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "texturearray/instancing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCI.pVertexInputState = &vertexInputStateCI;
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCI.pRasterizationState = &rasterizationStateCI;
pipelineCI.pColorBlendState = &colorBlendStateCI;
pipelineCI.pMultisampleState = &multisampleStateCI;
pipelineCI.pViewportState = &viewportStateCI;
pipelineCI.pDepthStencilState = &depthStencilStateCI;
pipelineCI.pDynamicState = &dynamicStateCI;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
uniformData.instance = new PerInstanceData[layerCount];
uint32_t uboSize = sizeof(uniformData.matrices) + (MAX_LAYERS * sizeof(PerInstanceData));
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, uboSize));
// Array indices and model matrices are fixed
float offset = -1.5f;
float center = (layerCount*offset) / 2.0f - (offset * 0.5f);
for (uint32_t i = 0; i < layerCount; i++) {
// Instance model matrix
uniformData.instance[i].model = glm::translate(glm::mat4(1.0f), glm::vec3(i * offset - center, 0.0f, 0.0f));
uniformData.instance[i].model = glm::scale(uniformData.instance[i].model, glm::vec3(0.5f));
// Instance texture array index
uniformData.instance[i].arrayIndex = (float)i;
}
// Update instanced part of the uniform buffer
uint8_t *pData;
uint32_t dataOffset = sizeof(uniformData.matrices);
uint32_t dataSize = layerCount * sizeof(PerInstanceData);
VK_CHECK_RESULT(vkMapMemory(device, uniformBuffer.memory, dataOffset, dataSize, 0, (void **)&pData));
memcpy(pData, uniformData.instance, dataSize);
vkUnmapMemory(device, uniformBuffer.memory);
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
}
void updateUniformBuffersCamera()
{
uniformData.matrices.projection = camera.matrices.perspective;
uniformData.matrices.view = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uniformData.matrices, sizeof(uniformData.matrices));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
generateCube();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffersCamera();
draw();
}
};
VULKAN_EXAMPLE_MAIN()