-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscan_layer_sensitivity.py
266 lines (215 loc) · 7.89 KB
/
scan_layer_sensitivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import os
from copy import deepcopy
import numpy as np
import torch
from pyutils.config import configs
from pyutils.general import ensure_dir
from pyutils.general import logger as lg
from pyutils.torch_train import load_model, set_torch_deterministic
from core.builder import (
make_attacker_loader,
make_criterion,
make_dataloader,
make_model,
)
from core.models.attack_defense.attacker import grad_attacker, grad_attacker_LSB
from core.models.layers.gemm_conv2d import GemmConv2d
from core.models.layers.gemm_linear import GemmLinear
from core.models.layers.utils import calculate_grad_hessian
from train_pretrain import validate
def reset_model(model):
load_model(
model,
configs.checkpoint.restore_checkpoint,
ignore_size_mismatch=int(configs.checkpoint.no_linear),
)
def calculate_taylor_series(model, N_bits: int):
for layer in model.modules():
if isinstance(layer, (GemmConv2d, GemmLinear)):
series_term = (
layer.weight._first_grad.data
* (layer.weight_quantizer.w_q_com.data - (2**N_bits - 1)).sign()
+ layer.weight._second_grad.data * (2**N_bits - 1) / 2
)
layer.weight._taylor_series = series_term
def perform_one_attack(model_copy, criterion, inf_ov, HD_con, random_int: int):
attacker = grad_attacker(
model=model_copy,
criterion=criterion,
N_sample=1,
inf_ov=inf_ov,
HD_con=HD_con,
protected_index={},
random_int=random_int,
device=device,
)
attacker.pbs_top(attacker_loader=attacker_loader)
res = validate(
model=model_copy,
validation_loader=validation_loader,
epoch=-3,
criterion=criterion,
accuracy_vector=[],
loss_vector=[],
device=device,
)
# lg.info(f"Accuracy is {res}")
return model_copy
def scan_grad_attacker(model_copy, criterion):
i, h, s = 10, 1, 1
set_torch_deterministic(configs.noise.random_state + (i + h) * s)
model_attack = perform_one_attack(
model_copy=model_copy, criterion=criterion, inf_ov=i, HD_con=h, random_int=s
)
calculate_grad_hessian(
model_attack,
train_loader=validation_loader,
criterion=criterion,
mode="defender",
num_samples=1,
device=device,
)
calculate_taylor_series(model=model_attack, N_bits=configs.quantize.N_bits)
sensitivity_stat = {}
for name, layer in model_attack.named_modules():
if isinstance(layer, (GemmConv2d, GemmLinear)):
# lg.info(f"For layer: {name}")
sensitivity = []
for i in range(20):
quartile = torch.quantile(
layer.weight._taylor_series.data.view(-1), i / 20
)
sensitivity.append(quartile.item())
sensitivity_stat[name] = sensitivity_stat.get(name, 0) + torch.tensor(
sensitivity
)
# lg.info(f"Average for layer {name} after attack is {layer.weight._taylor_series.data.median()}")
folder = f"./EXP_data/layer_sensitivity/{configs.model.name}"
ensure_dir(folder)
np.savetxt(
os.path.join(
folder,
f"Layer_{name}_{configs.quantize.N_bits}_bit_after_attack.csv",
),
np.array(sensitivity),
delimiter=",",
)
lg.info(f"Statistics are {sensitivity_stat}")
def perform_one_attack_protect(model_copy, criterion, inf_ov, HD_con, random_int: int):
attacker = grad_attacker_LSB(
model=model_copy,
criterion=criterion,
N_sample=1,
inf_ov=inf_ov,
HD_con=HD_con,
protected_index={},
random_int=random_int,
device=device,
)
attacker.pbs_top(attacker_loader=attacker_loader)
res = validate(
model=model_copy,
validation_loader=validation_loader,
epoch=-3,
criterion=criterion,
accuracy_vector=[],
loss_vector=[],
device=device,
)
# lg.info(f"Accuracy is {res}")
return model_copy
def scan_grad_attacker_protected(model_copy, criterion):
i, h, s = 10, 1, 1
set_torch_deterministic(configs.noise.random_state + (i + h) * s)
model_ptct = perform_one_attack_protect(
model_copy=model_copy, criterion=criterion, inf_ov=i, HD_con=h, random_int=s
)
calculate_grad_hessian(
model_ptct,
train_loader=validation_loader,
criterion=criterion,
mode="defender",
num_samples=1,
device=device,
)
calculate_taylor_series(model=model_ptct, N_bits=configs.quantize.N_bits)
sensitivity_stat_ptct = {}
for name, layer in model_ptct.named_modules():
if isinstance(layer, (GemmConv2d, GemmLinear)):
# lg.info(f"For layer: {name}")
sensitivity = []
for i in range(20):
quartile = torch.quantile(
layer.weight._taylor_series.data.view(-1), i / 20
)
sensitivity.append(quartile.item())
sensitivity_stat_ptct[name] = sensitivity_stat_ptct.get(
name, 0
) + torch.tensor(sensitivity)
lg.info(
f"Average for layer {name} after protection is {layer.weight._taylor_series.data.median()}"
)
folder = f"./EXP_data/layer_sensitivity/{configs.model.name}"
ensure_dir(folder)
np.savetxt(
os.path.join(
folder,
f"Layer_{name}_{configs.quantize.N_bits}_bit_after_protection.csv",
),
np.array(sensitivity),
delimiter=",",
)
lg.info(f"Statistics are {sensitivity_stat_ptct}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", metavar="FILE", help="config file")
args, opts = parser.parse_known_args()
configs.load(args.config, recursive=True)
device = torch.device("cuda")
_, validation_loader = make_dataloader()
criterion = make_criterion().to(device)
attacker_loader = make_attacker_loader()
model = make_model(device=device)
reset_model(model)
for name, module in model.named_modules():
if isinstance(module, (GemmConv2d, GemmLinear)):
module.weight_quantizer.to_two_com()
calculate_grad_hessian(
model,
train_loader=validation_loader,
criterion=criterion,
mode="defender",
num_samples=1,
device=device,
)
calculate_taylor_series(model=model, N_bits=configs.quantize.N_bits)
sensitivity_stat = {}
for name, layer in model.named_modules():
if isinstance(layer, (GemmConv2d, GemmLinear)):
lg.info(f"For layer: {name}")
sensitivity = []
for i in range(20):
quartile = torch.quantile(
layer.weight._taylor_series.data.view(-1), i / 20
)
sensitivity.append(quartile.item())
sensitivity_stat[name] = sensitivity_stat.get(name, 0) + torch.tensor(
sensitivity
)
lg.info(
f"Average for layer {name} is {layer.weight._taylor_series.data.median()}"
)
folder = f"./EXP_data/layer_sensitivity/{configs.model.name}"
ensure_dir(folder)
np.savetxt(
os.path.join(folder, f"Layer_{name}_{configs.quantize.N_bits}_bit.csv"),
np.array(sensitivity),
delimiter=",",
)
lg.info(f"Statistics are {sensitivity_stat}")
model_copy = deepcopy(model)
scan_grad_attacker(model_copy=model_copy, criterion=criterion)
reset_model(model)
model_copy = deepcopy(model)
scan_grad_attacker_protected(model_copy=model_copy, criterion=criterion)