-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscan_unary_defender.py
163 lines (140 loc) · 4.31 KB
/
scan_unary_defender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import os
import pickle
from copy import deepcopy
import torch
from pyutils.config import configs
from pyutils.general import ensure_dir
from pyutils.torch_train import load_model, set_torch_deterministic
from tqdm import tqdm
from core.builder import (
make_criterion,
make_dataloader,
make_model,
make_defender_small_loader,
)
from core.models.attack_defense.unary_defender import unary_defender
from core.models.layers.gemm_conv2d import GemmConv2d
from core.models.layers.gemm_linear import GemmLinear
def reset_model(model):
load_model(
model,
configs.checkpoint.restore_checkpoint,
ignore_size_mismatch=int(configs.checkpoint.no_linear),
)
def gen_protected_index(
model,
validation_loader,
small_loader,
criterion,
HD_con: int,
salience: str,
rt_ov: int = 0,
mem_ov: float = 0.0,
w_per: float = 0.0,
):
defender_ins = unary_defender(
model=model,
mem_ov=mem_ov,
w_percent=w_per,
HD_con=HD_con,
rt_ov=rt_ov,
criterion=criterion,
device=device,
temperature=0.001,
)
# assert prot_idx is dict, f"TypeError, the return prot_idx should be a dict, but got {type(prot_idx)}"
prot_idx = defender_ins.weight_protection(
val_loader=validation_loader,
small_loader=small_loader,
method="importance",
salience=salience,
)
# lg.info(f"Protected index is {prot_idx}")
return prot_idx
def test_defender(
model,
validation_loader,
criterion,
HD_con: int,
rt_ov: int = 0,
mem_ov: float = 0,
w_per: float = 0.0,
):
defender_ins = unary_defender(
model=model,
mem_ov=mem_ov,
w_percent=w_per,
rt_ov=rt_ov,
HD_con=HD_con,
criterion=criterion,
device=device,
)
prot_idx = defender_ins.weight_protection(
val_loader=validation_loader, method="even", salience="second-order"
)
return prot_idx
def scan_defender():
for w_per in tqdm([0.02, 0.075, 0.08, 0.09]):
model_copy = deepcopy(model)
h = 100
set_torch_deterministic(configs.noise.random_state + (4 + w_per) * 10000)
prot_idx = test_defender(
model=model_copy,
validation_loader=validation_loader,
criterion=criterion,
HD_con=h,
w_per=w_per,
rt_ov=10,
mem_ov=0.0,
)
folder = f"./log/defender/{configs.model.name}/Weight_Percentage/Even_sampling"
ensure_dir(folder)
f_save = open(
os.path.join(
folder, f"{configs.quantize.N_bits}_bit_NoO_grad_Wper_{w_per}.pkl"
),
"wb",
)
pickle.dump(prot_idx, f_save)
def scan_IS_defender(salience):
for w_per in tqdm([0.0002, 0.0005, 0.001, 0.002, 0.01, 0.02, 0.04]):
model_copy = deepcopy(model)
h = 100
set_torch_deterministic(configs.noise.random_state + (4 + w_per) * 10000)
prot_idx = gen_protected_index(
model=model_copy,
validation_loader=validation_loader,
small_loader=small_loader,
criterion=criterion,
w_per=w_per,
HD_con=h,
rt_ov=10,
salience=salience,
)
folder = f"./EXP_data/defender/{configs.model.name}/new_sampling"
ensure_dir(folder)
f_save = open(
os.path.join(
folder, f"{configs.quantize.N_bits}_bit_NoO_grad_Wper_{w_per}.pkl"
),
"wb",
)
pickle.dump(prot_idx, f_save)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", metavar="FILE", help="config file")
args, opts = parser.parse_known_args()
configs.load(args.config, recursive=True)
device = torch.device("cuda")
# set_torch_deterministic(configs.noise.random_state)
_, validation_loader = make_dataloader()
small_loader = make_defender_small_loader()
criterion = make_criterion().to(device)
model = make_model(device=device)
reset_model(model)
for name, module in model.named_modules():
if isinstance(module, (GemmConv2d, GemmLinear)):
module.weight_quantizer.to_two_com()
scan_defender()
scan_IS_defender(salience=configs.defense.salience)