forked from lawrennd/gp
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdemOptimiseGp.m
118 lines (98 loc) · 3.09 KB
/
demOptimiseGp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
% DEMOPTIMISEGP Shows that there is an optimum for the covariance function length scale.
% DESC shows that by varying the length scale an artificial data
% set has different likelihoods, yet there is an optimum for which
% the likelihood is maximised.
% COPYRIGHT : Neil D. Lawrence, 2006, 2008
% GP
randn('seed', 1e5);
rand('seed', 1e5);
fillColor = [0.7 0.7 0.7];
markerSize = 20;
markerWidth = 2;
markerType = 'k.';
lineWidth = 2;
x = linspace(-1, 1, 6)';
trueKern = kernCreate(x, {'rbf', 'white'});
kern.comp{2}.variance = 0.001;
K = kernCompute(trueKern, x);
y = gsamp(zeros(1, 6), K, 1)';
xtest = linspace(-1.5, 1.5, 200)';
kern = trueKern;
lengthScale = [0.05 0.1 0.25 0.5 1 2 4 8 16];
counter = 0;
figure(1)
p = plot(x, y, markerType);
set(p, 'markersize', markerSize, 'lineWidth', markerWidth);
set(gca, 'fontname', 'times')
set(gca, 'fontsize', 18)
set(gca, 'ylim', [-2 1])
set(gca, 'xlim', [-1.5 1.5])
zeroAxes(gca);
fileName = ['demOptimiseGp' num2str(counter)];
if exist('printDiagram') && printDiagram
printPlot(fileName, '../tex/diagrams', '../html');
end
clf
void = semilogx(NaN, NaN, 'k.-');
set(gca, 'fontname', 'times')
set(gca, 'fontsize', 18)
set(gca, 'ylim', [-12 -4])
set(gca, 'xlim', [0.025 32])
grid on
ylabel('log-likelihood')
xlabel('length scale')
fileName = ['demOptimiseGp' num2str(counter) '0'];
if exist('printDiagram') && printDiagram
printPlot(fileName, '../tex/diagrams', '../html');
end
clf
for i = 1:length(lengthScale)
kern.comp{1}.inverseWidth = 1/(lengthScale(i)*lengthScale(i));
K = kernCompute(kern, x);
[invK, U] = pdinv(K);
logDetK = logdet(K, U);
ll(i) = -0.5*(logDetK + y'*invK*y + size(y, 1)*log(2*pi));
llLogDet(i) = -.5*(logDetK+size(y, 1)*log(2*pi));
llFit(i) = -.5*y'*invK*y;
Kx = kernCompute(kern, x, xtest);
ypredMean = Kx'*invK*y;
ypredVar = kernDiagCompute(kern, xtest) - sum((Kx'*invK).*Kx', 2);
counter = counter + 1;
figure(counter)
clf
fill([xtest; xtest(end:-1:1)], ...
[ypredMean; ypredMean(end:-1:1)] ...
+ 2*[ypredVar; -ypredVar], ...
fillColor,'EdgeColor',fillColor)
hold on;
t = plot(xtest, ypredMean, 'k-');
p = plot(x, y, markerType);
set(p, 'markersize', markerSize, 'lineWidth', markerWidth);
set(t, 'linewidth', lineWidth);
set(gca, 'fontname', 'times')
set(gca, 'fontsize', 18)
set(gca, 'ylim', [-2 1])
zeroAxes(gca);
fileName = ['demOptimiseGp' num2str(counter)];
if exist('printDiagram') && printDiagram
printPlot(fileName, '../tex/diagrams', '../html');
end
counter = counter + 1;
figure(counter)
t = semilogx(lengthScale(1:i), ll(1:i), 'k.-');
hold on
t = [t; semilogx(lengthScale(1:i), llLogDet(1:i), 'k.:')];
t = [t; semilogx(lengthScale(1:i), llFit(1:i), 'k.--')];
set(t, 'markersize', markerSize, 'lineWidth', markerWidth);
set(gca, 'fontname', 'times')
set(gca, 'fontsize', 18)
set(gca, 'ylim', [-15 5])
set(gca, 'xlim', [0.025 32])
grid on
ylabel('log-likelihood')
xlabel('length scale')
fileName = ['demOptimiseGp' num2str(counter)];
if exist('printDiagram') && printDiagram
printPlot(fileName, '../tex/diagrams', '../html');
end
end