-
Notifications
You must be signed in to change notification settings - Fork 174
/
transform.py
590 lines (499 loc) · 19.2 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import numpy as np
import random
import torchvision.transforms as T
import cv2
import math
from data import transform as base_transform
from utils import is_list, is_dict, get_valid_args
class NoOperation():
def __call__(self, x):
return x
class BaseSilTransform():
def __init__(self, divsor=255.0, img_shape=None):
self.divsor = divsor
self.img_shape = img_shape
def __call__(self, x):
if self.img_shape is not None:
s = x.shape[0]
_ = [s] + [*self.img_shape]
x = x.reshape(*_)
return x / self.divsor
class BaseParsingCuttingTransform():
def __init__(self, divsor=255.0, cutting=None):
self.divsor = divsor
self.cutting = cutting
def __call__(self, x):
if self.cutting is not None:
cutting = self.cutting
else:
cutting = int(x.shape[-1] // 64) * 10
if cutting != 0:
x = x[..., cutting:-cutting]
if x.max() == 255 or x.max() == 255.:
return x / self.divsor
else:
return x / 1.0
class BaseSilCuttingTransform():
def __init__(self, divsor=255.0, cutting=None):
self.divsor = divsor
self.cutting = cutting
def __call__(self, x):
if self.cutting is not None:
cutting = self.cutting
else:
cutting = int(x.shape[-1] // 64) * 10
if cutting != 0:
x = x[..., cutting:-cutting]
return x / self.divsor
class BaseRgbTransform():
def __init__(self, mean=None, std=None):
if mean is None:
mean = [0.485*255, 0.456*255, 0.406*255]
if std is None:
std = [0.229*255, 0.224*255, 0.225*255]
self.mean = np.array(mean).reshape((1, 3, 1, 1))
self.std = np.array(std).reshape((1, 3, 1, 1))
def __call__(self, x):
return (x - self.mean) / self.std
# **************** Data Agumentation ****************
class RandomHorizontalFlip(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, seq):
if random.uniform(0, 1) >= self.prob:
return seq
else:
return seq[..., ::-1]
class RandomErasing(object):
def __init__(self, prob=0.5, sl=0.05, sh=0.2, r1=0.3, per_frame=False):
self.prob = prob
self.sl = sl
self.sh = sh
self.r1 = r1
self.per_frame = per_frame
def __call__(self, seq):
if not self.per_frame:
if random.uniform(0, 1) >= self.prob:
return seq
else:
for _ in range(100):
seq_size = seq.shape
area = seq_size[1] * seq_size[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < seq_size[2] and h < seq_size[1]:
x1 = random.randint(0, seq_size[1] - h)
y1 = random.randint(0, seq_size[2] - w)
seq[:, x1:x1+h, y1:y1+w] = 0.
return seq
return seq
else:
self.per_frame = False
frame_num = seq.shape[0]
ret = [self.__call__(seq[k][np.newaxis, ...])
for k in range(frame_num)]
self.per_frame = True
return np.concatenate(ret, 0)
class RandomRotate(object):
def __init__(self, prob=0.5, degree=10):
self.prob = prob
self.degree = degree
def __call__(self, seq):
if random.uniform(0, 1) >= self.prob:
return seq
else:
dh, dw = seq.shape[-2:]
# rotation
degree = random.uniform(-self.degree, self.degree)
M1 = cv2.getRotationMatrix2D((dh // 2, dw // 2), degree, 1)
# affine
if len(seq.shape) == 4:
seq = seq.transpose(0, 2, 3, 1)
seq = [cv2.warpAffine(_[0, ...], M1, (dw, dh))
for _ in np.split(seq, seq.shape[0], axis=0)]
seq = np.concatenate([np.array(_)[np.newaxis, ...]
for _ in seq], 0)
if len(seq.shape) == 4:
seq = seq.transpose(0, 3, 1, 2)
return seq
class RandomPerspective(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, seq):
if random.uniform(0, 1) >= self.prob:
return seq
else:
h, w = seq.shape[-2:]
cutting = int(w // 44) * 10
x_left = list(range(0, cutting))
x_right = list(range(w - cutting, w))
TL = (random.choice(x_left), 0)
TR = (random.choice(x_right), 0)
BL = (random.choice(x_left), h)
BR = (random.choice(x_right), h)
srcPoints = np.float32([TL, TR, BR, BL])
canvasPoints = np.float32([[0, 0], [w, 0], [w, h], [0, h]])
perspectiveMatrix = cv2.getPerspectiveTransform(
np.array(srcPoints), np.array(canvasPoints))
if len(seq.shape) == 4:
seq = seq.transpose(0, 2, 3, 1)
seq = [cv2.warpPerspective(_[0, ...], perspectiveMatrix, (w, h))
for _ in np.split(seq, seq.shape[0], axis=0)]
seq = np.concatenate([np.array(_)[np.newaxis, ...]
for _ in seq], 0)
if len(seq.shape) == 4:
seq = seq.transpose(0, 3, 1, 2)
return seq
class RandomAffine(object):
def __init__(self, prob=0.5, degree=10):
self.prob = prob
self.degree = degree
def __call__(self, seq):
if random.uniform(0, 1) >= self.prob:
return seq
else:
dh, dw = seq.shape[-2:]
# rotation
max_shift = int(dh // 64 * 10)
shift_range = list(range(0, max_shift))
pts1 = np.float32([[random.choice(shift_range), random.choice(shift_range)], [
dh-random.choice(shift_range), random.choice(shift_range)], [random.choice(shift_range), dw-random.choice(shift_range)]])
pts2 = np.float32([[random.choice(shift_range), random.choice(shift_range)], [
dh-random.choice(shift_range), random.choice(shift_range)], [random.choice(shift_range), dw-random.choice(shift_range)]])
M1 = cv2.getAffineTransform(pts1, pts2)
# affine
if len(seq.shape) == 4:
seq = seq.transpose(0, 2, 3, 1)
seq = [cv2.warpAffine(_[0, ...], M1, (dw, dh))
for _ in np.split(seq, seq.shape[0], axis=0)]
seq = np.concatenate([np.array(_)[np.newaxis, ...]
for _ in seq], 0)
if len(seq.shape) == 4:
seq = seq.transpose(0, 3, 1, 2)
return seq
# ******************************************
def Compose(trf_cfg):
assert is_list(trf_cfg)
transform = T.Compose([get_transform(cfg) for cfg in trf_cfg])
return transform
def get_transform(trf_cfg=None):
if is_dict(trf_cfg):
transform = getattr(base_transform, trf_cfg['type'])
valid_trf_arg = get_valid_args(transform, trf_cfg, ['type'])
return transform(**valid_trf_arg)
if trf_cfg is None:
return lambda x: x
if is_list(trf_cfg):
transform = [get_transform(cfg) for cfg in trf_cfg]
return transform
raise "Error type for -Transform-Cfg-"
# **************** For GaitSSB ****************
# Fan, et al: Learning Gait Representation from Massive Unlabelled Walking Videos: A Benchmark, T-PAMI2023
class RandomPartDilate():
def __init__(self, prob=0.5, top_range=(12, 16), bot_range=(36, 40)):
self.prob = prob
self.top_range = top_range
self.bot_range = bot_range
self.modes_and_kernels = {
'RECT': [[5, 3], [5, 5], [3, 5]],
'CROSS': [[3, 3], [3, 5], [5, 3]],
'ELLIPSE': [[3, 3], [3, 5], [5, 3]]}
self.modes = list(self.modes_and_kernels.keys())
def __call__(self, seq):
'''
Using the image dialte and affine transformation to simulate the clorhing change cases.
Input:
seq: a sequence of silhouette frames, [s, h, w]
Output:
seq: a sequence of agumented frames, [s, h, w]
'''
if random.uniform(0, 1) >= self.prob:
return seq
else:
mode = random.choice(self.modes)
kernel_size = random.choice(self.modes_and_kernels[mode])
top = random.randint(self.top_range[0], self.top_range[1])
bot = random.randint(self.bot_range[0], self.bot_range[1])
seq = seq.transpose(1, 2, 0) # [s, h, w] -> [h, w, s]
_seq_ = seq.copy()
_seq_ = _seq_[top:bot, ...]
_seq_ = self.dilate(_seq_, kernel_size=kernel_size, mode=mode)
seq[top:bot, ...] = _seq_
seq = seq.transpose(2, 0, 1) # [h, w, s] -> [s, h, w]
return seq
def dilate(self, img, kernel_size=[3, 3], mode='RECT'):
'''
MORPH_RECT, MORPH_CROSS, ELLIPSE
Input:
img: [h, w]
Output:
img: [h, w]
'''
assert mode in ['RECT', 'CROSS', 'ELLIPSE']
kernel = cv2.getStructuringElement(getattr(cv2, 'MORPH_'+mode), kernel_size)
dst = cv2.dilate(img, kernel)
return dst
class RandomPartBlur():
def __init__(self, prob=0.5, top_range=(9, 20), bot_range=(29, 40), per_frame=False):
self.prob = prob
self.top_range = top_range
self.bot_range = bot_range
self.per_frame = per_frame
def __call__(self, seq):
'''
Input:
seq: a sequence of silhouette frames, [s, h, w]
Output:
seq: a sequence of agumented frames, [s, h, w]
'''
if not self.per_frame:
if random.uniform(0, 1) >= self.prob:
return seq
else:
top = random.randint(self.top_range[0], self.top_range[1])
bot = random.randint(self.bot_range[0], self.bot_range[1])
seq = seq.transpose(1, 2, 0) # [s, h, w] -> [h, w, s]
_seq_ = seq.copy()
_seq_ = _seq_[top:bot, ...]
_seq_ = cv2.GaussianBlur(_seq_, ksize=(3, 3), sigmaX=0)
_seq_ = (_seq_ > 0.2).astype(np.float)
seq[top:bot, ...] = _seq_
seq = seq.transpose(2, 0, 1) # [h, w, s] -> [s, h, w]
return seq
else:
self.per_frame = False
frame_num = seq.shape[0]
ret = [self.__call__(seq[k][np.newaxis, ...]) for k in range(frame_num)]
self.per_frame = True
return np.concatenate(ret, 0)
def DA4GaitSSB(
cutting = None,
ra_prob = 0.2,
rp_prob = 0.2,
rhf_prob = 0.5,
rpd_prob = 0.2,
rpb_prob = 0.2,
top_range = (9, 20),
bot_range = (39, 50),
):
transform = T.Compose([
RandomAffine(prob=ra_prob),
RandomPerspective(prob=rp_prob),
BaseSilCuttingTransform(cutting=cutting),
RandomHorizontalFlip(prob=rhf_prob),
RandomPartDilate(prob=rpd_prob, top_range=top_range, bot_range=bot_range),
RandomPartBlur(prob=rpb_prob, top_range=top_range, bot_range=bot_range),
])
return transform
# **************** For pose-based methods ****************
class RandomSelectSequence(object):
"""
Randomly select different subsequences
"""
def __init__(self, sequence_length=10):
self.sequence_length = sequence_length
def __call__(self, data):
try:
start = np.random.randint(0, data.shape[0] - self.sequence_length)
except ValueError:
raise ValueError("The sequence length of data is too short, which does not meet the requirements.")
end = start + self.sequence_length
return data[start:end]
class SelectSequenceCenter(object):
"""
Select center subsequence
"""
def __init__(self, sequence_length=10):
self.sequence_length = sequence_length
def __call__(self, data):
try:
start = int((data.shape[0]/2) - (self.sequence_length / 2))
except ValueError:
raise ValueError("The sequence length of data is too short, which does not meet the requirements.")
end = start + self.sequence_length
return data[start:end]
class MirrorPoses(object):
"""
Performing Mirror Operations
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, data):
if np.random.random() <= self.prob:
center = np.mean(data[:, :, 0], axis=1, keepdims=True)
data[:, :, 0] = center - data[:, :, 0] + center
return data
class NormalizeEmpty(object):
"""
Normliza Empty Joint
"""
def __call__(self, data):
frames, joints = np.where(data[:, :, 0] == 0)
for frame, joint in zip(frames, joints):
center_of_gravity = np.mean(data[frame], axis=0)
data[frame, joint, 0] = center_of_gravity[0]
data[frame, joint, 1] = center_of_gravity[1]
data[frame, joint, 2] = 0
return data
class RandomMove(object):
"""
Move: add Random Movement to each joint
"""
def __init__(self,random_r =[4,1]):
self.random_r = random_r
def __call__(self, data):
noise = np.zeros(3)
noise[0] = np.random.uniform(-self.random_r[0], self.random_r[0])
noise[1] = np.random.uniform(-self.random_r[1], self.random_r[1])
data += np.tile(noise,(data.shape[0], data.shape[1], 1))
return data
class PointNoise(object):
"""
Add Gaussian noise to pose points
std: standard deviation
"""
def __init__(self, std=0.01):
self.std = std
def __call__(self, data):
noise = np.random.normal(0, self.std, data.shape).astype(np.float32)
return data + noise
class FlipSequence(object):
"""
Temporal Fliping
"""
def __init__(self, probability=0.5):
self.probability = probability
def __call__(self, data):
if np.random.random() <= self.probability:
return np.flip(data,axis=0).copy()
return data
class InversePosesPre(object):
'''
Left-right flip of skeletons
'''
def __init__(self, probability=0.5, joint_format='coco'):
self.probability = probability
if joint_format == 'coco':
self.invers_arr = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
elif joint_format in ['alphapose', 'openpose']:
self.invers_arr = [0, 1, 5, 6, 7, 2, 3, 4, 11, 12, 13, 8, 9, 10, 15, 14, 17, 16]
else:
raise ValueError("Invalid joint_format.")
def __call__(self, data):
for i in range(len(data)):
if np.random.random() <= self.probability:
data[i]=data[i,self.invers_arr,:]
return data
class JointNoise(object):
"""
Add Gaussian noise to joint
std: standard deviation
"""
def __init__(self, std=0.25):
self.std = std
def __call__(self, data):
# T, V, C
noise = np.hstack((
np.random.normal(0, self.std, (data.shape[1], 2)),
np.zeros((data.shape[1], 1))
)).astype(np.float32)
return data + np.repeat(noise[np.newaxis, ...], data.shape[0], axis=0)
class GaitTRMultiInput(object):
def __init__(self, joint_format='coco',):
if joint_format == 'coco':
self.connect_joint = np.array([5,0,0,1,2,0,0,5,6,7,8,5,6,11,12,13,14])
elif joint_format in ['alphapose', 'openpose']:
self.connect_joint = np.array([1,1,1,2,3,1,5,6,2,8,9,5,11,12,0,0,14,15])
else:
raise ValueError("Invalid joint_format.")
def __call__(self, data):
# (C, T, V) -> (I, C * 2, T, V)
data = np.transpose(data, (2, 0, 1))
data = data[:2, :, :]
C, T, V = data.shape
data_new = np.zeros((5, C, T, V))
# Joints
data_new[0, :C, :, :] = data
for i in range(V):
data_new[1, :, :, i] = data[:, :, i] - data[:, :, 0]
# Velocity
for i in range(T - 2):
data_new[2, :, i, :] = data[:, i + 1, :] - data[:, i, :]
data_new[3, :, i, :] = data[:, i + 2, :] - data[:, i, :]
# Bones
for i in range(len(self.connect_joint)):
data_new[4, :, :, i] = data[:, :, i] - data[:, :, self.connect_joint[i]]
I, C, T, V = data_new.shape
data_new = data_new.reshape(I*C, T, V)
# (C T V) -> (T V C)
data_new = np.transpose(data_new, (1, 2, 0))
return data_new
class GaitGraphMultiInput(object):
def __init__(self, center=0, joint_format='coco'):
self.center = center
if joint_format == 'coco':
self.connect_joint = np.array([5,0,0,1,2,0,0,5,6,7,8,5,6,11,12,13,14])
elif joint_format in ['alphapose', 'openpose']:
self.connect_joint = np.array([1,1,1,2,3,1,5,6,2,8,9,5,11,12,0,0,14,15])
else:
raise ValueError("Invalid joint_format.")
def __call__(self, data):
T, V, C = data.shape
x_new = np.zeros((T, V, 3, C + 2))
# Joints
x = data
x_new[:, :, 0, :C] = x
for i in range(V):
x_new[:, i, 0, C:] = x[:, i, :2] - x[:, self.center, :2]
# Velocity
for i in range(T - 2):
x_new[i, :, 1, :2] = x[i + 1, :, :2] - x[i, :, :2]
x_new[i, :, 1, 3:] = x[i + 2, :, :2] - x[i, :, :2]
x_new[:, :, 1, 3] = x[:, :, 2]
# Bones
for i in range(V):
x_new[:, i, 2, :2] = x[:, i, :2] - x[:, self.connect_joint[i], :2]
# Angles
bone_length = 0
for i in range(C - 1):
bone_length += np.power(x_new[:, :, 2, i], 2)
bone_length = np.sqrt(bone_length) + 0.0001
for i in range(C - 1):
x_new[:, :, 2, C+i] = np.arccos(x_new[:, :, 2, i] / bone_length)
x_new[:, :, 2, 3] = x[:, :, 2]
return x_new
class GaitGraph1Input(object):
'''
Transpose the input
'''
def __call__(self, data):
# (T V C) -> (C T V)
data = np.transpose(data, (2, 0, 1))
return data[...,np.newaxis]
class SkeletonInput(object):
'''
Transpose the input
'''
def __call__(self, data):
# (T V C) -> (T C V)
data = np.transpose(data, (0, 2, 1))
return data[...,np.newaxis]
class TwoView(object):
def __init__(self,trf_cfg):
assert is_list(trf_cfg)
self.transform = T.Compose([get_transform(cfg) for cfg in trf_cfg])
def __call__(self, data):
return np.concatenate([self.transform(data), self.transform(data)], axis=1)
class MSGGTransform():
def __init__(self, joint_format="coco"):
if joint_format == "coco": #17
self.mask=[6,8,14,12,7,13,5,10,16,11,9,15]
elif joint_format in ['alphapose', 'openpose']: #18
self.mask=[2,3,9,8,6,12,5,4,10,11,7,13]
else:
raise ValueError("Invalid joint_format.")
def __call__(self, x):
result=x[...,self.mask,:].copy()
return result