-
Notifications
You must be signed in to change notification settings - Fork 174
/
skeletongait++.py
191 lines (161 loc) · 7.05 KB
/
skeletongait++.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from ..base_model import BaseModel
from ..modules import HorizontalPoolingPyramid, PackSequenceWrapper, SeparateFCs, SeparateBNNecks, SetBlockWrapper, conv3x3, conv1x1, BasicBlock2D, BasicBlockP3D
from einops import rearrange
import copy
class SkeletonGaitPP(BaseModel):
def build_network(self, model_cfg):
#B, C = [1, 4, 4, 1], 2
in_C, B, C = model_cfg['Backbone']['in_channels'], model_cfg['Backbone']['blocks'], model_cfg['Backbone']['C']
self.inference_use_emb = model_cfg['use_emb2'] if 'use_emb2' in model_cfg else False
self.inplanes = 32 * C
self.sil_layer0 = SetBlockWrapper(nn.Sequential(
conv3x3(1, self.inplanes, 1),
nn.BatchNorm2d(self.inplanes),
nn.ReLU(inplace=True)
))
self.map_layer0 = SetBlockWrapper(nn.Sequential(
conv3x3(2, self.inplanes, 1),
nn.BatchNorm2d(self.inplanes),
nn.ReLU(inplace=True)
))
self.sil_layer1 = SetBlockWrapper(self.make_layer(BasicBlock2D, 32 * C, stride=[1, 1], blocks_num=B[0], mode='2d'))
self.map_layer1 = copy.deepcopy(self.sil_layer1)
self.fusion = AttentionFusion(32 * C)
self.layer2 = self.make_layer(BasicBlockP3D, 64 * C, stride=[2, 2], blocks_num=B[1], mode='p3d')
self.layer3 = self.make_layer(BasicBlockP3D, 128 * C, stride=[2, 2], blocks_num=B[2], mode='p3d')
self.layer4 = self.make_layer(BasicBlockP3D, 256 * C, stride=[1, 1], blocks_num=B[3], mode='p3d')
self.FCs = SeparateFCs(16, 256*C, 128*C)
self.BNNecks = SeparateBNNecks(16, 128*C, class_num=model_cfg['SeparateBNNecks']['class_num'])
self.TP = PackSequenceWrapper(torch.max)
self.HPP = HorizontalPoolingPyramid(bin_num=[16])
def make_layer(self, block, planes, stride, blocks_num, mode='2d'):
if max(stride) > 1 or self.inplanes != planes * block.expansion:
if mode == '3d':
downsample = nn.Sequential(nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=[1, 1, 1], stride=stride, padding=[0, 0, 0], bias=False), nn.BatchNorm3d(planes * block.expansion))
elif mode == '2d':
downsample = nn.Sequential(conv1x1(self.inplanes, planes * block.expansion, stride=stride), nn.BatchNorm2d(planes * block.expansion))
elif mode == 'p3d':
downsample = nn.Sequential(nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=[1, 1, 1], stride=[1, *stride], padding=[0, 0, 0], bias=False), nn.BatchNorm3d(planes * block.expansion))
else:
raise TypeError('xxx')
else:
downsample = lambda x: x
layers = [block(self.inplanes, planes, stride=stride, downsample=downsample)]
self.inplanes = planes * block.expansion
s = [1, 1] if mode in ['2d', 'p3d'] else [1, 1, 1]
for i in range(1, blocks_num):
layers.append(
block(self.inplanes, planes, stride=s)
)
return nn.Sequential(*layers)
def inputs_pretreament(self, inputs):
### Ensure the same data augmentation for heatmap and silhouette
pose_sils = inputs[0]
new_data_list = []
for pose, sil in zip(pose_sils[0], pose_sils[1]):
sil = sil[:, np.newaxis, ...] # [T, 1, H, W]
pose_h, pose_w = pose.shape[-2], pose.shape[-1]
sil_h, sil_w = sil.shape[-2], sil.shape[-1]
if sil_h != sil_w and pose_h == pose_w:
cutting = (sil_h - sil_w) // 2
pose = pose[..., cutting:-cutting]
cat_data = np.concatenate([pose, sil], axis=1) # [T, 3, H, W]
new_data_list.append(cat_data)
new_inputs = [[new_data_list], inputs[1], inputs[2], inputs[3], inputs[4]]
return super().inputs_pretreament(new_inputs)
def forward(self, inputs):
ipts, labs, _, _, seqL = inputs
pose = ipts[0]
pose = pose.transpose(1, 2).contiguous()
assert pose.size(-1) in [44, 48, 88, 96]
maps = pose[:, :2, ...]
sils = pose[:, -1, ...].unsqueeze(1)
del ipts
map0 = self.map_layer0(maps)
map1 = self.map_layer1(map0)
sil0 = self.sil_layer0(sils)
sil1 = self.sil_layer1(sil0)
out1 = self.fusion(sil1, map1)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out4 = self.layer4(out3) # [n, c, s, h, w]
# Temporal Pooling, TP
outs = self.TP(out4, seqL, options={"dim": 2})[0] # [n, c, h, w]
n, c, h, w = outs.size()
# Horizontal Pooling Matching, HPM
feat = self.HPP(outs) # [n, c, p]
embed_1 = self.FCs(feat) # [n, c, p]
embed_2, logits = self.BNNecks(embed_1) # [n, c, p]
if self.inference_use_emb:
embed = embed_2
else:
embed = embed_1
retval = {
'training_feat': {
'triplet': {'embeddings': embed_1, 'labels': labs},
'softmax': {'logits': logits, 'labels': labs}
},
'visual_summary': {
'image/sils': rearrange(pose * 255., 'n c s h w -> (n s) c h w'),
},
'inference_feat': {
'embeddings': embed
}
}
return retval
class AttentionFusion(nn.Module):
def __init__(self, in_channels=64, squeeze_ratio=16):
super(AttentionFusion, self).__init__()
hidden_dim = int(in_channels / squeeze_ratio)
self.conv = SetBlockWrapper(
nn.Sequential(
conv1x1(in_channels * 2, hidden_dim),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
conv3x3(hidden_dim, hidden_dim),
nn.BatchNorm2d(hidden_dim),
nn.ReLU(inplace=True),
conv1x1(hidden_dim, in_channels * 2),
)
)
def forward(self, sil_feat, map_feat):
'''
sil_feat: [n, c, s, h, w]
map_feat: [n, c, s, h, w]
'''
c = sil_feat.size(1)
feats = torch.cat([sil_feat, map_feat], dim=1)
score = self.conv(feats) # [n, 2 * c, s, h, w]
score = rearrange(score, 'n (d c) s h w -> n d c s h w', d=2)
score = F.softmax(score, dim=1)
retun = sil_feat * score[:, 0] + map_feat * score[:, 1]
return retun
class CatFusion(nn.Module):
def __init__(self, in_channels=64):
super(CatFusion, self).__init__()
self.conv = SetBlockWrapper(
nn.Sequential(
conv1x1(in_channels * 2, in_channels),
)
)
def forward(self, sil_feat, map_feat):
'''
sil_feat: [n, c, s, h, w]
map_feat: [n, c, s, h, w]
'''
feats = torch.cat([sil_feat, map_feat])
retun = self.conv(feats)
return retun
class PlusFusion(nn.Module):
def __init__(self):
super(PlusFusion, self).__init__()
def forward(self, sil_feat, map_feat):
'''
sil_feat: [n, c, s, h, w]
map_feat: [n, c, s, h, w]
'''
return sil_feat + map_feat