-
Notifications
You must be signed in to change notification settings - Fork 174
/
swingait.py
945 lines (813 loc) · 39.3 KB
/
swingait.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
import torch
import torch.nn as nn
from ..base_model import BaseModel
from ..modules import HorizontalPoolingPyramid, PackSequenceWrapper, SeparateFCs, SeparateBNNecks, SetBlockWrapper, ParallelBN1d
# ******* Copy from https://github.com/haofanwang/video-swin-transformer-pytorch/blob/main/video_swin_transformer.py *******
from functools import reduce, lru_cache
from operator import mul
from einops import rearrange
import torch.nn.functional as F
class Mlp(nn.Module):
""" Multilayer perceptron."""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, D, H, W, C)
window_size (tuple[int]): window size
Returns:
windows: (B*num_windows, window_size*window_size, C)
"""
B, D, H, W, C = x.shape
x = x.view(B, D // window_size[0], window_size[0], H // window_size[1], window_size[1], W // window_size[2], window_size[2], C)
windows = x.permute(0, 1, 3, 5, 2, 4, 6, 7).contiguous().view(-1, reduce(mul, window_size), C)
return windows
def window_reverse(windows, window_size, B, D, H, W):
"""
Args:
windows: (B*num_windows, window_size, window_size, C)
window_size (tuple[int]): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, D, H, W, C)
"""
x = windows.view(B, D // window_size[0], H // window_size[1], W // window_size[2], window_size[0], window_size[1], window_size[2], -1)
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1)
return x
def get_window_size(x_size, window_size, shift_size=None):
use_window_size = list(window_size)
if shift_size is not None:
use_shift_size = list(shift_size)
for i in range(len(x_size)):
if x_size[i] <= window_size[i]:
use_window_size[i] = x_size[i]
if shift_size is not None:
use_shift_size[i] = 0
if shift_size is None:
return tuple(use_window_size)
else:
return tuple(use_window_size), tuple(use_shift_size)
from torch.nn.init import _calculate_fan_in_and_fan_out
import math
import warnings
# Copy from https://github.com/rwightman/pytorch-image-models/blob/8ff45e41f7a6aba4d5fdadee7dc3b7f2733df045/timm/models/layers/weight_init.py
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
# Copy from https://github.com/rwightman/pytorch-image-models/blob/8ff45e41f7a6aba4d5fdadee7dc3b7f2733df045/timm/models/layers/weight_init.py
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
applied while sampling the normal with mean/std applied, therefore a, b args
should be adjusted to match the range of mean, std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
with torch.no_grad():
return _trunc_normal_(tensor, mean, std, a, b)
class WindowAttention3D(nn.Module):
""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The temporal length, height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wd, Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1) * (2 * window_size[2] - 1), num_heads)) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_d = torch.arange(self.window_size[0])
coords_h = torch.arange(self.window_size[1])
coords_w = torch.arange(self.window_size[2])
coords = torch.stack(torch.meshgrid(coords_d, coords_h, coords_w)) # 3, Wd, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 3, Wd*Wh*Ww, Wd*Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 2] += self.window_size[2] - 1
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
relative_coords[:, :, 1] *= (2 * self.window_size[2] - 1)
relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, N, N) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[self.relative_position_index[:N, :N].reshape(-1)].reshape(
N, N, -1) # Wd*Wh*Ww,Wd*Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
# Copy from https://github.com/rwightman/pytorch-image-models/blob/8ff45e41f7a6aba4d5fdadee7dc3b7f2733df045/timm/models/layers/drop.py
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
# Copy from https://github.com/rwightman/pytorch-image-models/blob/8ff45e41f7a6aba4d5fdadee7dc3b7f2733df045/timm/models/layers/drop.py
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f'drop_prob={round(self.drop_prob,3):0.3f}'
class SwinTransformerBlock3D(nn.Module):
""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): Window size.
shift_size (tuple[int]): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, num_heads, window_size=(2,7,7), shift_size=(0,0,0),
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_checkpoint=False):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
self.use_checkpoint=use_checkpoint
assert 0 <= self.shift_size[0] < self.window_size[0], "shift_size must in 0-window_size"
assert 0 <= self.shift_size[1] < self.window_size[1], "shift_size must in 0-window_size"
assert 0 <= self.shift_size[2] < self.window_size[2], "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention3D(
dim, window_size=self.window_size, num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward_part1(self, x, mask_matrix):
B, D, H, W, C = x.shape
window_size, shift_size = get_window_size((D, H, W), self.window_size, self.shift_size)
x = self.norm1(x)
# pad feature maps to multiples of window size
pad_l = pad_t = pad_d0 = 0
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
pad_b = (window_size[1] - H % window_size[1]) % window_size[1]
pad_r = (window_size[2] - W % window_size[2]) % window_size[2]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
_, Dp, Hp, Wp, _ = x.shape
# cyclic shift
if any(i > 0 for i in shift_size):
shifted_x = torch.roll(x, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=attn_mask) # B*nW, Wd*Wh*Ww, C
# merge windows
attn_windows = attn_windows.view(-1, *(window_size+(C,)))
shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp, Wp) # B D' H' W' C
# reverse cyclic shift
if any(i > 0 for i in shift_size):
x = torch.roll(shifted_x, shifts=(shift_size[0], shift_size[1], shift_size[2]), dims=(1, 2, 3))
else:
x = shifted_x
if pad_d1 >0 or pad_r > 0 or pad_b > 0:
x = x[:, :D, :H, :W, :].contiguous()
return x
def forward_part2(self, x):
return self.drop_path(self.mlp(self.norm2(x)))
def forward(self, x, mask_matrix):
""" Forward function.
Args:
x: Input feature, tensor size (B, D, H, W, C).
mask_matrix: Attention mask for cyclic shift.
"""
shortcut = x
if self.use_checkpoint:
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix)
else:
x = self.forward_part1(x, mask_matrix)
x = shortcut + self.drop_path(x)
if self.use_checkpoint:
x = x + checkpoint.checkpoint(self.forward_part2, x)
else:
x = x + self.forward_part2(x)
return x
class PatchMerging(nn.Module):
""" Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
""" Forward function.
Args:
x: Input feature, tensor size (B, D, H, W, C).
"""
B, D, H, W, C = x.shape
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C
x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C
x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C
x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
# cache each stage results
@lru_cache()
def compute_mask(D, H, W, window_size, shift_size, device):
img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1
cnt = 0
for d in slice(-window_size[0]), slice(-window_size[0], -shift_size[0]), slice(-shift_size[0],None):
for h in slice(-window_size[1]), slice(-window_size[1], -shift_size[1]), slice(-shift_size[1],None):
for w in slice(-window_size[2]), slice(-window_size[2], -shift_size[2]), slice(-shift_size[2],None):
img_mask[:, d, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1
mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2]
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
import numpy as np
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of feature channels
depth (int): Depths of this stage.
num_heads (int): Number of attention head.
window_size (tuple[int]): Local window size. Default: (1,7,7).
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
"""
def __init__(self,
dim,
depth,
num_heads,
window_size=(1,7,7),
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False):
super().__init__()
self.window_size = window_size
self.shift_size = tuple(i // 2 for i in window_size)
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock3D(
dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=(0,0,0) if (i % 2 == 0) else self.shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
use_checkpoint=use_checkpoint,
)
for i in range(depth)]
)
self.downsample = downsample
if self.downsample == False:
self.downsample = lambda x: x
else:
if self.downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = nn.Sequential(
norm_layer(dim),
nn.Linear(dim, 2 * dim, bias=False)
)
def forward(self, x):
""" Forward function.
Args:
x: Input feature, tensor size (B, C, D, H, W).
"""
# calculate attention mask for SW-MSA
B, C, D, H, W = x.shape
window_size, shift_size = get_window_size((D,H,W), self.window_size, self.shift_size)
x = rearrange(x, 'b c d h w -> b d h w c')
Dp = int(np.ceil(D / window_size[0])) * window_size[0]
Hp = int(np.ceil(H / window_size[1])) * window_size[1]
Wp = int(np.ceil(W / window_size[2])) * window_size[2]
attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device)
for blk in self.blocks:
x = blk(x, attn_mask)
x = x.view(B, D, H, W, -1)
if self.downsample is not None:
x = self.downsample(x)
x = rearrange(x, 'b d h w c -> b c d h w')
return x
class PatchEmbed3D(nn.Module):
""" Video to Patch Embedding.
Args:
patch_size (int): Patch token size. Default: (2,4,4).
in_chans (int): Number of input video channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, D, H, W = x.size()
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
if D % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
x = self.proj(x) # B C D Wh Ww
if self.norm is not None:
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
return x
class SwinTransformer3D(nn.Module):
""" Swin Transformer backbone.
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
patch_size (int | tuple(int)): Patch size. Default: (4,4,4).
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
depths (tuple[int]): Depths of each Swin Transformer stage.
num_heads (tuple[int]): Number of attention head of each stage.
window_size (int): Window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): Dropout rate.
attn_drop_rate (float): Attention dropout rate. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
norm_layer: Normalization layer. Default: nn.LayerNorm.
patch_norm (bool): If True, add normalization after patch embedding. Default: False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
"""
def __init__(self,
pretrained=None,
pretrained2d=True,
patch_size=(4,4,4),
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=(2,7,7),
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
patch_norm=False,
frozen_stages=-1,
use_checkpoint=False,
downsample=[1, 2, 2, 1]):
super().__init__()
self.pretrained = pretrained
self.pretrained2d = pretrained2d
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.frozen_stages = frozen_stages
self.window_size = window_size
self.patch_size = patch_size
# split image into non-overlapping patches
self.patch_embed = PatchEmbed3D(
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
if downsample[i_layer]== 2:
dfunc = PatchMerging
elif downsample[i_layer] == 1:
dfunc = None
elif downsample[i_layer] == 0:
dfunc = False
else:
raise ValueError('xxx')
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=dfunc,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
# self.num_features = int(embed_dim * 2**self.num_layers)
self.num_features = 512
# add a norm layer for each output
self.norm = norm_layer(self.num_features)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1:
self.pos_drop.eval()
for i in range(0, self.frozen_stages):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def inflate_weights(self, logger):
"""Inflate the swin2d parameters to swin3d.
The differences between swin3d and swin2d mainly lie in an extra
axis. To utilize the pretrained parameters in 2d model,
the weight of swin2d models should be inflated to fit in the shapes of
the 3d counterpart.
Args:
logger (logging.Logger): The logger used to print
debugging infomation.
"""
checkpoint = torch.load(self.pretrained, map_location='cpu')
state_dict = checkpoint['model']
# delete relative_position_index since we always re-init it
relative_position_index_keys = [k for k in state_dict.keys() if "relative_position_index" in k]
for k in relative_position_index_keys:
del state_dict[k]
# delete attn_mask since we always re-init it
attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
for k in attn_mask_keys:
del state_dict[k]
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).repeat(1,1,self.patch_size[0],1,1) / self.patch_size[0]
# bicubic interpolate relative_position_bias_table if not match
relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k]
for k in relative_position_bias_table_keys:
relative_position_bias_table_pretrained = state_dict[k]
relative_position_bias_table_current = self.state_dict()[k]
L1, nH1 = relative_position_bias_table_pretrained.size()
L2, nH2 = relative_position_bias_table_current.size()
L2 = (2*self.window_size[1]-1) * (2*self.window_size[2]-1)
wd = self.window_size[0]
if nH1 != nH2:
logger.warning(f"Error in loading {k}, passing")
else:
if L1 != L2:
S1 = int(L1 ** 0.5)
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
relative_position_bias_table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(2*self.window_size[1]-1, 2*self.window_size[2]-1),
mode='bicubic')
relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view(nH2, L2).permute(1, 0)
state_dict[k] = relative_position_bias_table_pretrained.repeat(2*wd-1,1)
msg = self.load_state_dict(state_dict, strict=False)
logger.info(msg)
logger.info(f"=> loaded successfully '{self.pretrained}'")
del checkpoint
torch.cuda.empty_cache()
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if pretrained:
self.pretrained = pretrained
if isinstance(self.pretrained, str):
self.apply(_init_weights)
logger = get_root_logger()
logger.info(f'load model from: {self.pretrained}')
if self.pretrained2d:
# Inflate 2D model into 3D model.
self.inflate_weights(logger)
else:
# Directly load 3D model.
load_checkpoint(self, self.pretrained, strict=False, logger=logger)
elif self.pretrained is None:
self.apply(_init_weights)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
"""Forward function."""
x = self.patch_embed(x)
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x.contiguous())
x = rearrange(x, 'n c d h w -> n d h w c')
x = self.norm(x)
x = rearrange(x, 'n d h w c -> n c d h w')
return x
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(SwinTransformer3D, self).train(mode)
self._freeze_stages()
# ******* Copy from https://github.com/haofanwang/video-swin-transformer-pytorch/blob/main/video_swin_transformer.py *******
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
# import copy
from ..modules import BasicBlock2D, BasicBlockP3D
import torch.optim as optim
import os.path as osp
from collections import OrderedDict
from utils import get_valid_args, get_attr_from
class SwinGait(BaseModel):
def __init__(self, cfgs, training):
self.T_max_iter = cfgs['trainer_cfg']['T_max_iter']
super(SwinGait, self).__init__(cfgs, training=training)
def build_network(self, model_cfg):
channels = model_cfg['Backbone']['channels']
layers = model_cfg['Backbone']['layers']
in_c = model_cfg['Backbone']['in_channels']
self.inplanes = channels[0]
self.layer0 = SetBlockWrapper(nn.Sequential(
conv3x3(in_c, self.inplanes, 1),
nn.BatchNorm2d(self.inplanes),
nn.ReLU(inplace=True)
))
self.layer1 = SetBlockWrapper(self.make_layer(BasicBlock2D, channels[0], stride=[1, 1], blocks_num=layers[0], mode='2d'))
self.layer2 = self.make_layer(BasicBlockP3D, channels[1], stride=[2, 2], blocks_num=layers[1], mode='p3d')
self.ulayer = SetBlockWrapper(nn.UpsamplingBilinear2d(size=(30, 20)))
self.transformer = SwinTransformer3D(
patch_size = [1, 2, 2],
in_chans = channels[1],
embed_dim = 256,
depths = [layers[2], layers[3]],
num_heads = [16, 32],
window_size = [3, 3, 5],
downsample = [1, 0],
drop_path_rate = 0.1,
patch_norm = True,
)
self.FCs = SeparateFCs(model_cfg['SeparateBNNecks']['parts_num'], in_channels=512, out_channels=256)
self.BNNecks = SeparateBNNecks(**model_cfg['SeparateBNNecks'])
self.TP = PackSequenceWrapper(torch.max)
self.HPP = HorizontalPoolingPyramid(bin_num=model_cfg['bin_num'])
def get_optimizer(self, optimizer_cfg):
self.msg_mgr.log_info(optimizer_cfg)
optimizer = get_attr_from([optim], optimizer_cfg['solver'])
valid_arg = get_valid_args(optimizer, optimizer_cfg, ['solver'])
transformer_no_decay = ['patch_embed', 'norm', 'relative_position_bias_table']
transformer_params = list(self.transformer.named_parameters())
params_list = [
{'params': [p for n, p in transformer_params if any(nd in n for nd in transformer_no_decay)], 'lr': optimizer_cfg['lr'], 'weight_decay': 0.},
{'params': [p for n, p in transformer_params if not any(nd in n for nd in transformer_no_decay)], 'lr': optimizer_cfg['lr'], 'weight_decay': optimizer_cfg['weight_decay']},
{'params': self.FCs.parameters(), 'lr': optimizer_cfg['lr'] * 0.1, 'weight_decay': optimizer_cfg['weight_decay']},
{'params': self.BNNecks.parameters(), 'lr': optimizer_cfg['lr'] * 0.1, 'weight_decay': optimizer_cfg['weight_decay']},
]
for i in range(5):
if hasattr(self, 'layer%d'%i):
params_list.append(
{'params': getattr(self, 'layer%d'%i).parameters(), 'lr': optimizer_cfg['lr'] * 0.1, 'weight_decay': optimizer_cfg['weight_decay']}
)
optimizer = optimizer(params_list)
return optimizer
def init_parameters(self):
for m in self.modules():
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, (nn.Conv3d, nn.Conv2d, nn.Conv1d)):
nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
elif isinstance(m, (nn.BatchNorm3d, nn.BatchNorm2d, nn.BatchNorm1d)):
if m.affine:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0.0)
def make_layer(self, block, planes, stride, blocks_num, mode='2d'):
if max(stride) > 1 or self.inplanes != planes * block.expansion:
if mode == '3d':
downsample = nn.Sequential(nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=[1, 1, 1], stride=stride, padding=[0, 0, 0], bias=False), nn.BatchNorm3d(planes * block.expansion))
elif mode == '2d':
downsample = nn.Sequential(conv1x1(self.inplanes, planes * block.expansion, stride=stride), nn.BatchNorm2d(planes * block.expansion))
elif mode == 'p3d':
downsample = nn.Sequential(nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=[1, 1, 1], stride=[1, *stride], padding=[0, 0, 0], bias=False), nn.BatchNorm3d(planes * block.expansion))
else:
raise TypeError('xxx')
else:
downsample = lambda x: x
layers = [block(self.inplanes, planes, stride=stride, downsample=downsample)]
self.inplanes = planes * block.expansion
s = [1, 1] if mode in ['2d', 'p3d'] else [1, 1, 1]
for i in range(1, blocks_num):
layers.append(
block(self.inplanes, planes, stride=s)
)
return nn.Sequential(*layers)
def forward(self, inputs):
if self.training:
adjust_learning_rate(self.optimizer, self.iteration, T_max_iter=self.T_max_iter)
ipts, labs, _, _, seqL = inputs
sils = ipts[0].unsqueeze(1)
del ipts
out0 = self.layer0(sils)
out1 = self.layer1(out0)
out2 = self.layer2(out1) # [n, c, s, h, w]
out2 = self.ulayer(out2)
out4 = self.transformer(out2) # [n, 768, s/4, 4, 3]
# Temporal Pooling, TP
outs = self.TP(out4, seqL, options={"dim": 2})[0] # [n, c, h, w]
# Horizontal Pooling Matching, HPM
feat = self.HPP(outs) # [n, c, p]
feat = torch.cat([feat, feat[:, :, -1].clone().detach().unsqueeze(-1)], dim=-1)
embed_1 = self.FCs(feat) # [n, c, p]
embed_2, logits = self.BNNecks(embed_1) # [n, c, p]
embed_1 = embed_1.contiguous()[:, :, :-1] # [n, p, c]
embed_2 = embed_2.contiguous()[:, :, :-1] # [n, p, c]
logits = logits.contiguous()[:, :, :-1] # [n, p, c]
embed = embed_1
retval = {
'training_feat': {
'triplet': {'embeddings': embed_1, 'labels': labs},
'softmax': {'logits': logits, 'labels': labs}
},
'visual_summary': {
'image/sils': rearrange(sils,'n c s h w -> (n s) c h w')
},
'inference_feat': {
'embeddings': embed
}
}
return retval
import math
def adjust_learning_rate(optimizer, iteration, iteration_per_epoch=1000, T_max_iter=10000, min_lr=1e-6):
"""Decay the learning rate based on schedule"""
if iteration < T_max_iter:
if iteration % iteration_per_epoch == 0 :
alpha = 0.5 * (1. + math.cos(math.pi * iteration / T_max_iter))
for param_group in optimizer.param_groups:
param_group['lr'] = max(param_group['initial_lr'] * alpha, min_lr)
else:
pass
elif iteration == T_max_iter:
for param_group in optimizer.param_groups:
param_group['lr'] = min_lr
else:
pass