-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
375 lines (301 loc) · 12.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch
import torch.nn as nn
import math
class InputEmbeddings(nn.Module):
def __init__(self, d_model: int, vocab_size: int):
super(InputEmbeddings, self).__init__()
self.d_model = d_model
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, d_model)
def forward(self, x):
return self.embedding(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, seq_len: int, dropout: float):
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.seq_len = seq_len
self.dropout = nn.Dropout(dropout)
# Compute the positional encodings once in a matrix of shape (seq_len,
# d_model)
pe = torch.zeros(seq_len, d_model)
# Create a vector of positions (seq_len, 1)
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1)
# Create a vector of shape (d_model)
div_term = torch.exp(
torch.arange(0, d_model, 2).float()
* (-math.log(10000.0) / d_model) # (d_model / 2,)
)
# Compute the positional encodings for the even indices using sin
# function sin(position * (10000 ** (2i / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
# Compute the positional encodings for the odd indices using cos
# function cos(position * (10000 ** (2i / d_model))
pe[:, 1::2] = torch.cos(position * div_term)
# Add a batch dimension to the positional encodings
pe = pe.unsqueeze(0)
# Register the positional encodings as a buffer
self.register_buffer("pe", pe)
def forward(self, x):
# (batch, seq_len, d_model)
x = x + (self.pe[:, : x.shape[1], :]).requires_grad_(False)
return self.dropout(x)
class LayerNormalization(nn.Module):
def __init__(self, features: int, eps: float = 10**-6):
super(LayerNormalization, self).__init__()
self.eps = eps
# nn.Parameter makes the multiplicative parameter trainable
self.alpha = nn.Parameter(torch.ones(features))
# nn.Parameter makes the additive parameter trainable
self.bias = nn.Parameter(torch.zeros(features))
def forward(self, x):
# (batch, seq_len, 1)
mean = x.mean(dim=-1, keepdim=True)
# (batch, seq_len, 1)
std = x.std(dim=-1, keepdim=True)
return self.alpha * (x - mean) / (std + self.eps) + self.bias
class FeedForwardBlock(nn.Module):
def __init__(self, d_model: int, d_ff: int, dropout: float):
super(FeedForwardBlock, self).__init__()
# First linear layer with W_1 and b_1 parameters
self.fc1 = nn.Linear(d_model, d_ff)
# Dropout layer
self.dropout = nn.Dropout(dropout)
# Second linear layer with W_2 and b_2 parameters
self.fc2 = nn.Linear(d_ff, d_model)
def forward(self, x):
# Apply the first linear layer (batch, seq_len, d_model) -> (batch,
# seq_len, d_ff)
x = self.fc1(x)
# Apply ReLU activation function
x = torch.relu(x)
# Apply dropout
x = self.dropout(x)
# Apply the second linear layer (batch, seq_len, d_ff) -> (batch,
# seq_len, d_model)
x = self.fc2(x)
return x
class MultiHeadAttentionBlock(nn.Module):
def __init__(self, d_model: int, h: int, dropout: float):
super(MultiHeadAttentionBlock, self).__init__()
self.d_model = d_model
self.h = h
assert d_model % h == 0, "d_model must be divisible by h"
# Dimension of the vector received by each head
self.d_k = d_model // h
self.w_q = nn.Linear(d_model, d_model, bias=False)
self.w_k = nn.Linear(d_model, d_model, bias=False)
self.w_v = nn.Linear(d_model, d_model, bias=False)
self.w_o = nn.Linear(d_model, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
@staticmethod
def attention(query, key, value, mask, dropout: nn.Dropout):
d_k = query.shape[-1]
# (batch, h, seq_len, d_k) -> (batch, h, seq_len, seq_len)
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
attention_scores.masked_fill(mask == 0, -1e9)
attention_scores = attention_scores.softmax(dim=-1)
if dropout is not None:
attention_scores = dropout(attention_scores)
return (attention_scores @ value), attention_scores
def forward(self, q, k, v, mask):
# Linearly transform the queries, keys, and values
# (batch, seq_len, d_model) -> (batch, seq_len, d_model)
query = self.w_q(q)
key = self.w_k(k)
value = self.w_v(v)
# Split the queries, keys, and values into multiple heads
# (batch, seq_len, d_model) -> (batch, seq_len, h, d_k) -> (batch, h, seq_len, d_k)
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(
1, 2
)
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(
1, 2
)
# Calculate the attention scores
# Implicitly calls setattr() to set the attention_scores attribute
x, self.attention_scores = MultiHeadAttentionBlock.attention(
query, key, value, mask, self.dropout
)
# Combine the heads together
# (batch, h, seq_len, d_k) -> (batch, seq_len, h, d_k) -> (batch, seq_len, d_model)
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)
# Multiply by W_o to get the final output
# (batch, seq_len, d_model) -> (batch, seq_len, d_model)
return self.w_o(x)
class ResidualConnection(nn.Module):
def __init__(self, features: int, dropout: float):
super(ResidualConnection, self).__init__()
self.dropout = nn.Dropout(dropout)
self.norm = LayerNormalization(features)
def forward(self, x, sublayer):
# In principle, the order of normalization and sublayer can be changed
return x + self.dropout(sublayer(self.norm(x)))
class EncoderBlock(nn.Module):
def __init__(
self,
features: int,
self_attention_block: MultiHeadAttentionBlock,
feed_forward_block: FeedForwardBlock,
dropout: float,
):
super(EncoderBlock, self).__init__()
self.self_attention_block = self_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList(
[ResidualConnection(features, dropout) for _ in range(2)]
)
def forward(self, x, src_mask):
x = self.residual_connections[0](
x, lambda x: self.self_attention_block(x, x, x, src_mask)
)
x = self.residual_connections[1](x, self.feed_forward_block)
return x
class Encoder(nn.Module):
def __init__(self, features: int, layers: nn.ModuleList):
super(Encoder, self).__init__()
self.layers = layers
self.norm = LayerNormalization(features)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class DecoderBlock(nn.Module):
def __init__(
self,
features: int,
self_attention_block: MultiHeadAttentionBlock,
cross_attention_block: MultiHeadAttentionBlock,
feed_forward_block: FeedForwardBlock,
dropout: float,
):
super(DecoderBlock, self).__init__()
self.self_attention_block = self_attention_block
self.cross_attention_block = cross_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList(
[ResidualConnection(features, dropout) for _ in range(3)]
)
def forward(self, x, encoder_output, src_mask, tgt_mask):
x = self.residual_connections[0](
x, lambda x: self.self_attention_block(x, x, x, tgt_mask)
)
x = self.residual_connections[1](
x,
lambda x: self.cross_attention_block(
x, encoder_output, encoder_output, src_mask
),
)
x = self.residual_connections[2](x, self.feed_forward_block)
return x
class Decoder(nn.Module):
def __init__(self, features: int, layers: nn.ModuleList):
super(Decoder, self).__init__()
self.layers = layers
self.norm = LayerNormalization(features)
def forward(self, x, encoder_output, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, encoder_output, src_mask, tgt_mask)
return self.norm(x)
class ProjectionLayer(nn.Module):
def __init__(self, d_model: int, vocab_size: int):
super(ProjectionLayer, self).__init__()
self.projection = nn.Linear(d_model, vocab_size)
def forward(self, x):
# (batch, seq_len, d_model) -> (batch, seq_len, vocab_size)
# return torch.log_softmax(self.projection(x), dim=-1)
return self.projection(x)
class Transformer(nn.Module):
def __init__(
self,
encoder: Encoder,
decoder: Decoder,
src_embed: InputEmbeddings,
tgt_embed: InputEmbeddings,
src_pos: PositionalEncoding,
tgt_pos: PositionalEncoding,
projection_layer: ProjectionLayer,
):
super(Transformer, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.src_pos = src_pos
self.tgt_pos = tgt_pos
self.projection_layer = projection_layer
def encode(self, src, src_mask):
# (batch, seq_len, d_model)
src = self.src_embed(src)
src = self.src_pos(src)
return self.encoder(src, src_mask)
def decode(
self,
encoder_output: torch.Tensor,
src_mask: torch.Tensor,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
):
# (batch, seq_len, d_model)
tgt = self.tgt_embed(tgt)
tgt = self.tgt_pos(tgt)
return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
def project(self, x):
# (batch, seq_len, d_model)
return self.projection_layer(x)
def build_transformer(
src_vocab_size: int,
tgt_vocab_size: int,
src_seq_len: int,
tgt_seq_len: int,
d_model: int = 512,
N: int = 6,
h: int = 8,
dropout: float = 0.1,
d_ff: int = 2048,
) -> Transformer:
# Create the embedding layers
src_embed = InputEmbeddings(d_model, src_vocab_size)
tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)
# Create the positional encoding layers (in principle, one could be used for
# both source and target sequences)
src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
# Create the encoder blocks
encoder_blocks = []
for _ in range(N):
encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
encoder_block = EncoderBlock(
d_model, encoder_self_attention_block, feed_forward_block, dropout
)
encoder_blocks.append(encoder_block)
# Create the decoder blocks
decoder_blocks = []
for _ in range(N):
decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
decoder_block = DecoderBlock(
d_model,
decoder_self_attention_block,
decoder_cross_attention_block,
feed_forward_block,
dropout,
)
decoder_blocks.append(decoder_block)
# Create the encoder and decoder
encoder = Encoder(d_model, nn.ModuleList(encoder_blocks))
decoder = Decoder(d_model, nn.ModuleList(decoder_blocks))
# Create the projection layer
projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
# Crete the transformer
transformer = Transformer(
encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer
)
# Initialize the parameters with Glorot initialization
for p in transformer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return transformer