-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathownCifarDenseNet.py
151 lines (126 loc) · 5.47 KB
/
ownCifarDenseNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms, datasets, models
from collections import namedtuple
Statistics = namedtuple('Statistics', ['loss', 'accuracy'])
class Net(models.resnet.ResNet):
def __init__(self):
super(Net, self).__init__(models.resnet.BasicBlock, [2, 2, 2, 2], num_classes=100)
def forward(self, x):
return F.softmax(
super(Net, self).forward(x),
dim=-1
)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if (batch_idx % args.log_interval == 0) and (not args.no_logging):
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader, stats):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
# data.unsqueeze(0)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
correct_percentage = 100. * correct / len(test_loader.dataset)
if (not args.no_logging):
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
correct_percentage))
stats.append(Statistics(test_loss, correct_percentage))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch CIFAR 100 Example')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 32)')
parser.add_argument('--test-batch-size', type=int, default=50, metavar='N',
help='input batch size for testing (default: 50)')
parser.add_argument('-e', '--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=42, metavar='S',
help='random seed (default: 42)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--no-logging', action='store_true', default=False,
help='No logging during training and testing')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
print('use Cuda? {}'.format(use_cuda))
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 2, 'pin_memory': True} if use_cuda else {}
transform = transforms.Compose(
[transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]
)
trainset = datasets.CIFAR100(
root='./data',
train=True,
download=False,
transform=transform
)
train_loader = torch.utils.data.DataLoader(
dataset=trainset,
batch_size=args.batch_size,
shuffle=True,
**kwargs
)
testset = datasets.CIFAR100(
root='./data',
train=False,
download=False,
transform=transform
)
test_loader = torch.utils.data.DataLoader(
dataset=testset,
batch_size=args.test_batch_size,
shuffle=False,
**kwargs
)
model = torch.hub.load('pytorch/vision', 'densenet121', pretrained=True).to(device)
total_params = sum(p.numel() for p in model.parameters())
if (not args.no_logging):
print('Parameters: {}'.format(total_params))
stats = []
optimizer = optim.Adadelta(model.parameters(), lr=0.1)
test(args, model, device, test_loader, stats)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader, stats)
if (args.save_model):
torch.save(model.state_dict(), "myDenseNet.pt")
f1 = open('stats1_dense.txt', 'a+')
f2 = open('stats2_dense.txt', 'a+')
print('Statistics:\n')
f2.write('{},{}\n'.format(stats[-1].loss, stats[-1].accuracy))
for s in stats:
print('loss = {}, acc = {}%'.format(s.loss, s.accuracy))
f1.write('{:.4f}, {:.4f}\n'.format(s.loss, s.accuracy))
f1.close()
f2.close()
if __name__ == '__main__':
main()