forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
169 lines (135 loc) · 6.72 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2021 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helpers to compute loss metrics."""
import scipy.stats
import tensorflow.compat.v2 as tf
import tensorflow_probability as tfp
TASK_CLASSIFICATION = 'classification'
TASK_NORMALIZED_REGRESSION = 'normalized_regression'
TASK_UNNORMALIZED_REGRESSION = 'unnormalized_regression'
TASK_GROUNDED_UNNORMALIZED_REGRESSION = 'grounded_unnormalized_regression'
REGRESSION_TASKS = [TASK_NORMALIZED_REGRESSION, TASK_UNNORMALIZED_REGRESSION,
TASK_GROUNDED_UNNORMALIZED_REGRESSION]
ALL_TASKS = [TASK_CLASSIFICATION] + REGRESSION_TASKS
LOSS_MSE = 'mse'
LOSS_SOFTMAX_CROSS_ENTROPY = 'softmax_cross_entropy'
ALL_LOSSES = [LOSS_SOFTMAX_CROSS_ENTROPY, LOSS_MSE]
def normalize_regression_loss(regression_loss, predictions):
# Normalize loss such that:
# 1) E_{x uniform}[loss(x, prediction)] does not depend on prediction
# 2) E_{x uniform, prediction uniform}[loss(x, prediction)] is as before.
# Divides MSE regression loss by E[(prediction-x)^2]; assumes x=[-1,1]
normalization = 2./3.
normalized_loss = regression_loss / ((1./3 + predictions**2) / normalization)
return normalized_loss
def equal32(x, y):
return tf.cast(tf.equal(x, y), tf.float32)
def mse_loss(predicted, targets):
return (predicted - targets) ** 2
def get_std_factor_from_confidence_percent(percent):
dec = percent/100.
inv_dec = 1 - dec
return scipy.stats.norm.ppf(dec+inv_dec/2)
def get_all_metric_names(task_type, model_uncertainty, loss_config, # pylint: disable=unused-argument
mode='eval', return_dict=True):
"""Get all the scalar fields produced by compute_loss_and_metrics."""
names = ['regularization_loss', 'prediction_accuracy', str(mode)+'_loss']
if task_type == TASK_CLASSIFICATION:
names += ['classification_loss']
else:
names += ['regression_loss', 'avg_mu', 'var_mu']
if model_uncertainty:
names += ['uncertainty_loss', 'scaled_regression_loss',
'uncertainty_plus_scaled_regression',
'avg_sigma', 'var_sigma',
'percent_in_conf_interval', 'error_sigma_correlation',
'avg_prob']
if return_dict:
return {name: 0. for name in names}
else:
return names
def compute_loss_and_metrics(mu, log_sigma_sq,
regression_targets, labels,
task_type, model_uncertainty, loss_config,
regularization_loss=0., confidence_interval=95,
mode='train'):
"""Computes loss statistics and other metrics."""
scalars_to_log = dict()
vectors_to_log = dict()
scalars_to_log['regularization_loss'] = regularization_loss
vectors_to_log['mu'] = mu
if task_type == TASK_CLASSIFICATION:
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=mu, labels=labels, name='cross_entropy')
classification_loss = tf.reduce_mean(cross_entropy, name='class_loss')
total_loss = classification_loss
sigma = None
scalars_to_log['classification_loss'] = classification_loss
predicted_labels = tf.argmax(mu, axis=1)
correct_predictions = equal32(predicted_labels, labels)
else:
regression_loss = mse_loss(mu, regression_targets)
if 'mse_normalize' in loss_config and loss_config['mse_normalize']:
assert task_type in [TASK_GROUNDED_UNNORMALIZED_REGRESSION,
TASK_NORMALIZED_REGRESSION]
regression_loss = normalize_regression_loss(regression_loss, mu)
avg_regression_loss = tf.reduce_mean(regression_loss)
vectors_to_log['regression_loss'] = regression_loss
scalars_to_log['regression_loss'] = avg_regression_loss
scalars_to_log['avg_mu'] = tf.reduce_mean(mu)
scalars_to_log['var_mu'] = tf.reduce_mean(mse_loss(mu, tf.reduce_mean(mu)))
predicted_labels = tf.cast(mu > 0, tf.int64)
correct_predictions = equal32(predicted_labels, labels)
if model_uncertainty:
# This implements Eq. (1) in https://arxiv.org/pdf/1612.01474.pdf
inv_sigma_sq = tf.math.exp(-log_sigma_sq)
scaled_regression_loss = regression_loss * inv_sigma_sq
scaled_regression_loss = tf.reduce_mean(scaled_regression_loss)
uncertainty_loss = tf.reduce_mean(log_sigma_sq)
total_loss = uncertainty_loss + scaled_regression_loss
scalars_to_log['uncertainty_loss'] = uncertainty_loss
scalars_to_log['scaled_regression_loss'] = scaled_regression_loss
scalars_to_log['uncertainty_plus_scaled_regression'] = total_loss
sigma = tf.math.exp(log_sigma_sq / 2.)
vectors_to_log['sigma'] = sigma
scalars_to_log['avg_sigma'] = tf.reduce_mean(sigma)
var_sigma = tf.reduce_mean(mse_loss(sigma, tf.reduce_mean(sigma)))
scalars_to_log['var_sigma'] = var_sigma
# Compute # of labels that fall into the confidence interval.
std_factor = get_std_factor_from_confidence_percent(confidence_interval)
lower_bound = mu - std_factor * sigma
upper_bound = mu + std_factor * sigma
preds = tf.logical_and(tf.greater(regression_targets, lower_bound),
tf.less(regression_targets, upper_bound))
percent_in_conf_interval = tf.reduce_mean(tf.cast(preds, tf.float32))
scalars_to_log['percent_in_conf_interval'] = percent_in_conf_interval*100
error_sigma_corr = tfp.stats.correlation(x=regression_loss,
y=sigma, event_axis=None)
scalars_to_log['error_sigma_correlation'] = error_sigma_corr
dists = tfp.distributions.Normal(mu, sigma)
probs = dists.prob(regression_targets)
scalars_to_log['avg_prob'] = tf.reduce_mean(probs)
else:
total_loss = avg_regression_loss
loss_name = str(mode)+'_loss'
total_loss = tf.add(total_loss, regularization_loss, name=loss_name)
scalars_to_log[loss_name] = total_loss
vectors_to_log['correct_predictions'] = correct_predictions
scalars_to_log['prediction_accuracy'] = tf.reduce_mean(correct_predictions)
# Validate that metrics outputted are exactly what is expected
expected = get_all_metric_names(task_type, model_uncertainty,
loss_config, mode, False)
assert set(expected) == set(scalars_to_log.keys())
return scalars_to_log, vectors_to_log