forked from anantzoid/Recurrent-Entity-Networks-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
245 lines (208 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import argparse
import torch
import torch.nn as nn
from torch.utils import data as data_utils
import torch.optim as optim
from tensorboardX import SummaryWriter
from torch.optim.lr_scheduler import StepLR
import numpy as np
from dataset import bAbIDataset
from model import REN
def weight_norm(parameters):
norm_type = 2
total_norm = 0
if parameters is None:
return 0
for p in parameters:
param_norm = p.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def _gradient_noise_and_clip(parameters,
noise_stddev=1e-3, max_clip=40.0, device="cpu"):
parameters = list(filter(lambda p: p.grad is not None, parameters))
nn.utils.clip_grad_norm(parameters, max_clip)
for p in parameters:
noise = torch.randn(p.size()) * noise_stddev
p.grad.data.add_(noise.to(device))
def cyclic_lr(step, step_size, lr_min, lr_max):
cycle = np.floor(1+float(step) / (2*step_size))
x = np.abs(float(step)/step_size-2*cycle+1)
lr = lr_min + (lr_max-lr_min)*np.max([0.0, 1-x])
return lr
def train(model, crit, optimizer, train_loader, args):
model.train()
totalloss, correct = 0,0
sm = torch.nn.Softmax()
for i, (story, query, answer) in enumerate(train_loader):
model.zero_grad()
story, query, answer = story.to(args.device), query.to(args.device), answer.to(args.device)
preds = model(story, query)
loss = crit(preds, answer)
loss = loss / story.shape[1]
pred_tokens = torch.argmax(sm(preds.detach()), 1)
loss.backward(retain_graph=True)
_gradient_noise_and_clip(model.parameters(),
noise_stddev=0.005, max_clip=40.0, device=args.device)
optimizer.step()
totalloss += loss.item()
#print(totalloss)
correct += pred_tokens.eq(answer.detach()).sum().to("cpu").item()
totalloss /= (i+1)
correct = (correct*1.0) / ((i+1) * args.batchsize)
return {'loss': totalloss,
'accuracy': correct}
def eval(model, crit, val_loader, args):
model.eval()
totalloss, correct = 0,0
with torch.no_grad():
for i, (story, query, answer) in enumerate(val_loader):
story, query, answer = story.to(args.device), query.to(args.device), answer.to(args.device)
preds = model(story, query)
loss = crit(preds, answer)
totalloss += loss.item()
correct += torch.argmax(preds.detach(), 1).eq(answer.detach()).sum().to("cpu").item()
totalloss /= (i+1)
correct = (correct*1.0) / ((i+1) * args.batchsize)
return {'loss': totalloss,
'accuracy': correct}
def main(args):
train_dataset = bAbIDataset(args.datadir, args.task)
val_dataset = bAbIDataset(args.datadir, args.task, train=False)
print("Dataset size: ", len(train_dataset))
#print("Vocab size: ", train_dataset.num_vocab)
print("Sentence size:", train_dataset.sentence_size)
print("Vocab set: ", train_dataset.vocab)
print("Story shape:", train_dataset[0][0].shape)
train_loader = data_utils.DataLoader(
train_dataset,
batch_size=args.batchsize,
num_workers=args.njobs,
shuffle = True,
pin_memory=True,
timeout=300,
drop_last=True)
val_loader = data_utils.DataLoader(
val_dataset,
batch_size=args.batchsize,
num_workers=args.njobs,
shuffle = False,
pin_memory=True,
timeout=300,
drop_last=True)
model = REN(20, train_dataset.num_vocab, 100, args.device, train_dataset.sentence_size, train_dataset.query_size).to(args.device)
model.init_keys()
log_path = os.path.join("logs", args.exp_name)
if not os.path.exists(log_path):
os.makedirs(log_path)
writer = SummaryWriter(log_path)
if args.multi:
model = torch.nn.DataParallel(model, device_ids=args.gpu_range)
loss = torch.nn.CrossEntropyLoss().to(args.device)
if args.cyc_lr is True:
lr = cyclic_lr(0, 10, 2e-4, 1e-2)
else:
lr = args.lr
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=args.weight_decay)
if not args.cyc_lr:
scheduler = StepLR(optimizer, step_size=25, gamma=0.5)
start_epoch, end_epoch = 0, args.epochs
if args.load_model is not None and args.load_model != '':
pt_model = torch.load(args.load_model)
try:
model.load_state_dict(pt_model['state_dict'])
except:
model = torch.nn.DataParallel(model, device_ids=[args.gpuid])
model.load_state_dict(pt_model['state_dict'])
optimizer.load_state_dict(pt_model['optimizer'])
start_epoch = pt_model['epochs']
end_epoch = start_epoch + args.epochs
for epoch in range(start_epoch, end_epoch):
train_result = train(model, loss, optimizer, train_loader, args)
val_result = eval(model, loss, val_loader, args)
if args.cyc_lr is True:
lr = cyclic_lr(epoch*(len(train_dataset)//args.batchsize), 10, 2e-4, 1e-2)
for param_group in optimizer.param_groups:
param_group['lr'] = lr#cyclic_learning_rate(epoch*(len(train_dataset)//args.batchsize))
elif epoch < 200:
scheduler.step()
for key in train_result.keys():
writer.add_scalar('{}_{}'.format('train', key), train_result[key], epoch)
for key in val_result.keys():
writer.add_scalar('{}_{}'.format('val', key), val_result[key], epoch)
for param_group in optimizer.param_groups:
writer.add_scalar('lr', param_group['lr'], epoch)
break
parameters = [_.grad.data for _ in list(
filter(lambda p: p.grad is not None, model.parameters()))]
writer.add_scalar('gradient_norm', weight_norm(parameters), epoch)
writer.add_scalar('output/R', weight_norm(model.output.R.weight.grad.data), epoch)
writer.add_scalar('output/H', weight_norm(model.output.H.weight.grad.data), epoch)
writer.add_scalar('story_enc/mask', weight_norm(model.story_enc.mask.grad), epoch)
writer.add_scalar('query_enc/mask', weight_norm(model.query_enc.mask.grad), epoch)
writer.add_scalar('prelu', weight_norm(model.prelu.weight.grad.data), epoch)
writer.add_scalar('embed', weight_norm(model.embedlayer.weight.grad.data), epoch)
writer.add_scalar('cell/U', weight_norm(model.cell.U.weight.grad.data), epoch)
writer.add_scalar('cell/V', weight_norm(model.cell.V.weight.grad.data), epoch)
writer.add_scalar('cell/W', weight_norm(model.cell.W.weight.grad.data), epoch)
writer.add_scalar('cell/bias', weight_norm(model.cell.bias.grad), epoch)
# writer.add_scalar('param_output/R', weight_norm(model.output.R.weight.data), epoch)
# writer.add_scalar('param_output/H', weight_norm(model.output.H.weight.data), epoch)
# writer.add_scalar('param_story_enc/mask', weight_norm(model.story_enc.mask), epoch)
# writer.add_scalar('param_query_enc/mask', weight_norm(model.query_enc.mask), epoch)
# writer.add_scalar('param_prelu', weight_norm(model.prelu.weight.data), epoch)
# writer.add_scalar('param_embed', weight_norm(model.embedlayer.weight.data), epoch)
# writer.add_scalar('param_cell/U', weight_norm(model.cell.U.weight.data), epoch)
# writer.add_scalar('param_cell/V', weight_norm(model.cell.V.weight.data), epoch)
# writer.add_scalar('param_cell/W', weight_norm(model.cell.W.weight.data), epoch)
# writer.add_scalar('param_cell/bias', weight_norm(model.cell.bias), epoch)
if epoch % args.save_interval == 0 or epoch == args.epochs-1:
for param_group in optimizer.param_groups:
log_lr = param_group['lr']
break
logline = 'Epoch: [{0}]\t Train Loss {1:.4f} Acc {2:.3f} \t \
Val Loss {3:.4f} Acc {4:.3f} lr {5:.4f}'.format(
epoch, train_result['loss'], train_result['accuracy'],
val_result['loss'], val_result['accuracy'], log_lr)
print(logline)
torch.save({
'state_dict': model.state_dict(),
'epochs': epoch+1,
'args': args,
'train_scores': train_result,
'val_scores': val_result,
'optimizer': optimizer.state_dict()
}, os.path.join(args.output_path, "%s_%d.pth"%(args.exp_name, epoch)))
return None
if __name__ == "__main__":
torch.manual_seed(3000)
np.random.seed(1000)
parser = argparse.ArgumentParser(description="")
parser.add_argument("--datadir", type=str, default='.data/tasks_1-20_v1-2/en/')
parser.add_argument("--task", type=int, default=1)
parser.add_argument("--load_model", type=str, default=None,
help='Path to saved classifier model')
parser.add_argument("--batchsize", type=int, default=32)
parser.add_argument("--njobs", type=int, default=10)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--weight_decay", type=float, default=0)
parser.add_argument("--epochs", type=int, default=1)
parser.add_argument("--save_interval", type=int, default=10)
parser.add_argument("--output_path", type=str, default='./logs',
help='Location to save the logs')
parser.add_argument("--exp_name", type=str, default='default_model',
help='Experiment Name')
parser.add_argument("--gpuid", type=int, default=0, help='Default GPU id')
parser.add_argument("--multi", action='store_true', help='To use DataParallel')
parser.add_argument("--gpu_range",type=str,default="0,1,2,3", help='GPU ids to use if multi')
parser.add_argument("--cyc_lr", action='store_true', help='Cyclic LR')
args = parser.parse_args()
args.gpu_range = [int(_) for _ in args.gpu_range.split(",")]
args.device = torch.device("cuda:%d"%args.gpuid if torch.cuda.is_available() else "cpu")
#if args.multi:
# torch.cuda.set_device(args.gpu_range[0])
#else:
# torch.cuda.set_device(args.gpuid)
print("Script configuration:\n", args)
main(args)