Skip to content

Latest commit

 

History

History
182 lines (121 loc) · 4.78 KB

README.md

File metadata and controls

182 lines (121 loc) · 4.78 KB

Python Data Science Workspace

This repository contains my workspace for doing Data Science in Python.

Requirements

Installation and setup

How to set-up the workspace the first time

  1. If not already existing, create a conda environment:

     conda create -n data_science python=3.7
    
  2. Activate the environment:

     source activate data_science
    
  3. Setup the workspace:

     pip install -U pip numpy
     pip install -r requirements.txt
     python -m ipykernel install --user
    
  4. Setup jupyter notebooks

     jupyter contrib nbextension install --user
     jupyter nbextensions_configurator enable --user
     jupyter nbextension install https://github.com/drillan/jupyter-black/archive/master.zip --user
     jupyter nbextension enable jupyter-black-master/jupyter-black
    
  5. Setup jupyter lab

     jupyter labextension install jupyter-leaflet
     jupyter labextension install @jupyter-widgets/jupyterlab-manager
     jupyter labextension install @krassowski/jupyterlab_go_to_definition
     jupyter labextension install jupyterlab_bokeh
     jupyter labextension install ipysheet
     jupyter labextension install jupyterlab-drawio
     jupyter labextension install @jupyterlab/toc
     jupyter labextension install jupyterlab_vim
    
     jupyter labextension install @jupyterlab/git
     pip install jupyterlab-git
     jupyter serverextension enable --py jupyterlab_git
    
     jupyter labextension install @ryantam626/jupyterlab_code_formatter
     pip install jupyterlab_code_formatter
     jupyter serverextension enable --py jupyterlab_code_formatter
    
  6. Reactivate the environment:

     source deactivate data_science
     source activate data_science
    
  7. Load the submodules:

     git submodule init
     git submodule update
    

How to use the workspace

  1. Activate the environment (if not already activated on this session):

     source activate data_science
    
  2. Set Spark environment variables:

     export SPARK_HOME=/opt/spark
     export PATH=$SPARK_HOME/bin:$PATH
    
  3. Start Jupyter Notebook:

     jupyter notebook --NotebookApp.iopub_data_rate_limit=10000000
    

How to update the workspace (after an upstream update)

  1. Get the last changes from upstream:

     git pull
    
  2. Activate the environment (if not already activated on this session):

     source activate data_science
    
  3. Update the dependencies:

     pip install -r requirements.txt
    
  4. Reactivate the environment:

     source deactivate data_science
     source activate data_science
    
  5. Update submodules:

     git submodule init
     git submodule update
    

How to upgrade the workspace (upgrading python packages)

  1. Activate the environment (if not already activated on this session):

     source activate data_science
    
  2. Upgrade the dependencies:

     pip-compile --upgrade
     pip install -r requirements.txt
    
  3. Reactivate the environment:

     source deactivate data_science
     source activate data_science
    

Facets

Facets is a tool for the visual exploration of datasets. It can be installed as following:

jupyter nbextension install facets/facets-dist/ --user

Then jupyter notebook should be started with an additional command line option:

--NotebookApp.iopub_data_rate_limit=10000000

The visualization can then be loaded as explained in the demo notebook.

Troubleshooting

GPU support for Jupyter

For computers on linux with optimus, you have to make a kernel that will be called with "optirun" to be able to use GPU acceleration. For this go to the following folder:

    cd ~/.local/share/jupyter/kernels/

then edit the file python3/kernel.json in order to add "optirun" as first entry into the argv array:

    {
            "language": "python",
            "display_name": "Python 3",
            "argv": [
            "optirun",
            "/home/fabien/.conda/envs/data_science/bin/python",
            "-m",
            "ipykernel",
            "-f",
            "{connection_file}"
            ]
    }

Interesting notebook extensions

I recommend installing the following notebook extension:

  • Code prettify
  • Codefolding
  • Collapsible Headings
  • contrib_nbextensions_help_item
  • Execute time
  • Initialization cells
  • Jupyter Black
  • Nbextensions dashboard tab
  • Nbextensions edit menu item
  • Notify
  • Python Markdown
  • Runtools
  • ScrollDown
  • Skip-Traceback
  • spellchecker
  • table_beautifier
  • Table of Contents (2)
  • Tree Filter
  • VIM binding