-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_ppl.py
executable file
·235 lines (208 loc) · 8.87 KB
/
eval_ppl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import torch
from tqdm import tqdm
import os
from torch.nn import CrossEntropyLoss
import json
import argparse
import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from llava.model.builder import load_pretrained_model
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
)
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
from transformers import set_seed
from prefixkv import PrefixKV
from patch_attention_forward import patch_llama_attention_forward
import datetime
from accelerate import Accelerator
from accelerate.utils import gather_object
import random
def load_image(image_file):
if image_file.startswith("http://") or image_file.startswith("https://"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def main(args):
set_seed(0)
accelerator = Accelerator()
if args.method == "prefixkv":
patch_llama_attention_forward()
with open(args.data_path, "r") as f:
data = json.load(f)
model_name = get_model_name_from_path(args.model_path)
if accelerator.num_processes == 1:
tokenizer, model, image_processor, context_len = load_pretrained_model(
args.model_path,
args.model_base,
model_name,
args.load_8bit,
args.load_4bit,
device="cuda",
)
else:
tokenizer, model, image_processor, context_len = load_pretrained_model(
args.model_path,
args.model_base,
model_name,
args.load_8bit,
args.load_4bit,
device=accelerator.device,
device_map=accelerator.device,
)
if "llama-2" in model_name.lower():
conv_mode = "llava_llama_2"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
if args.conv_mode is not None and conv_mode != args.conv_mode:
print(
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
conv_mode, args.conv_mode, args.conv_mode
)
)
else:
args.conv_mode = conv_mode
loss_fn = CrossEntropyLoss(reduction="none")
past_key_values = None
k_seq_dim = v_seq_dim = 2
nlls = []
os.makedirs(f"logs/{args.exp_name}", exist_ok=True)
data = data[: args.eval_samples]
random.shuffle(data)
with accelerator.split_between_processes(data, apply_padding=True) as batched_data:
for item in tqdm(batched_data):
current_nll = []
if args.method == "prefixkv":
kv_cache = PrefixKV(
model_name=model_name,
start_size=args.start_size,
recent_size=args.recent_size,
k_seq_dim=k_seq_dim,
v_seq_dim=v_seq_dim,
ratio=args.ratio,
layer_num=32 if "7b" in model_name else 40,
profile=args.profile,
)
else:
kv_cache = None
conv = conv_templates[args.conv_mode].copy()
image_path = os.path.join(args.image_path, item["image"])
if "mm-vet" in args.data_path:
question = item["question"]
question = question + "\n" + DEFAULT_IMAGE_TOKEN
answer = item["answer"]
else:
question = item["conversations"][0]["value"]
assert DEFAULT_IMAGE_TOKEN in question
answer = item["conversations"][1]["value"]
image = load_image(image_path)
image_tensor = process_images([image], image_processor, args)
image_tensor = image_tensor.to(model.device, dtype=torch.bfloat16)
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = (
tokenizer_image_token(
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
)
.unsqueeze(0)
.cuda()
)
answer_ids = tokenizer.encode(
answer, return_tensors="pt").cuda()[:, 1:]
past_key_values = None
num_of_token = 0
for idx in range(0, answer_ids.shape[-1]):
with torch.no_grad():
if past_key_values is None:
outputs = model(
input_ids,
images=image_tensor,
past_key_values=past_key_values,
use_cache=True,
output_attentions=True,
)
logits = outputs.logits.view(-1,
model.config.vocab_size)
num_of_token += logits.shape[0]
past_key_values = outputs.past_key_values
attentions = outputs.attentions
logits = logits[-1].view(-1, model.config.vocab_size)
label = answer_ids[:, idx: idx +
1].to(logits.device).view(-1)
neg_log_likelihood = loss_fn(logits, label)
if kv_cache is not None:
past_key_values = kv_cache(
past_key_values, num_of_token, attentions
)
else:
cur_input_ids = answer_ids[:, idx - 1: idx]
outputs = model(
cur_input_ids,
past_key_values=past_key_values,
use_cache=True,
output_attentions=True,
)
logits = outputs.logits.view(-1,
model.config.vocab_size)
num_of_token += logits.shape[0]
past_key_values = outputs.past_key_values
attentions = outputs.attentions
label = answer_ids[:, idx: idx +
1].to(logits.device).view(-1)
neg_log_likelihood = loss_fn(logits, label)
if kv_cache is not None:
past_key_values = kv_cache(
past_key_values, num_of_token, attentions
)
current_nll.append(neg_log_likelihood.cpu())
nlls.append(current_nll)
nlls = gather_object(nlls)[: len(data)]
nlls = [n for nl in nlls for n in nl]
ppl = torch.exp(torch.stack(nlls).mean())
if accelerator.is_main_process:
time = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
with open(f"logs/{args.exp_name}/{time}.txt", "a") as f:
f.write(f"Args:\n")
f.write(json.dumps(vars(args), indent=2))
f.write("\n")
f.write(f"{ppl.item()}\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str,
default="./models/llava-v1.5-7b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--data-path", type=str,
default="./data/mm-vet/mm-vet.json")
parser.add_argument("--image-path", type=str,
default="./data/mm-vet/images")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--image-aspect-ratio", type=str, default="pad")
parser.add_argument("--start-size", type=int, default=1)
parser.add_argument("--recent-size", type=int, default=2047)
parser.add_argument("--eval-samples", type=int, default=100)
parser.add_argument("--exp-name", type=str, default="llava-7b")
parser.add_argument("--method", type=str, default="elastic")
parser.add_argument("--ratio", type=float, default=0.2)
parser.add_argument("--profile", action="store_true", default=False)
args = parser.parse_args()
args.exp_name = args.exp_name + "/" + args.method + "/" + str(args.ratio)
main(args)