We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
烟火数据task1,5类,人车数据集task2,25类, "task_list": [0, 5, 30], 训练task1过程中:
smoke [00]: AP50=11.782, #pred=5124 fire [01]: AP50=4.394, #pred=2116 cloud [02]: AP50=2.165, #pred=68 fog [03]: AP50=0.000, #pred=190 chimney [04]: AP50=0.394, #pred=378 unknown [05]: AR50=74.162, #pred=524823 01/16 00:56:48 - mmengine - INFO - known classes has 7876 predictions. 01/16 00:56:48 - mmengine - INFO - unknown classes has 524823 predictions. 01/16 00:56:48 - mmengine - INFO - Wilderness Impact: {50: 0.0034278180619644037} 01/16 00:56:48 - mmengine - INFO - Absolute OSE (total_num_unk_det_as_known): {50: 27.0} 01/16 00:56:48 - mmengine - INFO - total_num_unk 21515 01/16 00:56:48 - mmengine - INFO - Current class AP50: 3.7471883620144704 01/16 00:56:48 - mmengine - INFO - Current class Precisions50: 9.631729353553066 01/16 00:56:48 - mmengine - INFO - Current class Recall50: 13.304210068743606 01/16 00:56:48 - mmengine - INFO - Known AP50: 3.7471883620144704 01/16 00:56:48 - mmengine - INFO - Known Precisions50: 9.631729353553066 01/16 00:56:48 - mmengine - INFO - Known Recall50: 13.304210068743606 01/16 00:56:48 - mmengine - INFO - Unknown AP50: 26.99864069336281 01/16 00:56:48 - mmengine - INFO - Unknown Precisions50: 3.040263098225497 01/16 00:56:48 - mmengine - INFO - Unknown Recall50: 74.16221237547654
训练task2过程中:
smoke [00]: AP50=11.809, #pred=5123 fire [01]: AP50=4.392, #pred=2119 cloud [02]: AP50=2.165, #pred=68 fog [03]: AP50=0.000, #pred=189 chimney [04]: AP50=0.390, #pred=378 person [05]: AP50=18.859, #pred=11307 car [06]: AP50=49.922, #pred=17710 pickup truck [07]: AP50=12.473, #pred=157 minibus [08]: AP50=26.351, #pred=1842 motorhome [09]: AP50=0.000, #pred=0 truck [10]: AP50=41.992, #pred=10958 forklift [11]: AP50=2.349, #pred=104 pushdozer [12]: AP50=23.951, #pred=860 crane [13]: AP50=34.171, #pred=273 road roller [14]: AP50=9.965, #pred=65 excavator [15]: AP50=44.151, #pred=959 mixer truck [16]: AP50=34.719, #pred=659 oil tank truck [17]: AP50=16.583, #pred=235 watering cart [18]: AP50=18.266, #pred=312 mixer truck [19]: AP50=0.000, #pred=0 fire fighting truck [20]: AP50=20.766, #pred=88 garbage truck [21]: AP50=0.000, #pred=70 bus [22]: AP50=31.923, #pred=420 tractors [23]: AP50=10.000, #pred=9 bicycle [24]: AP50=38.277, #pred=460 electric scooter [25]: AP50=0.000, #pred=2 motorbike [26]: AP50=37.552, #pred=2617 tricycle [27]: AP50=19.135, #pred=1405 train [28]: AP50=69.948, #pred=128 other [29]: AP50=4.534, #pred=2274 unknown [30]: AR50=0.000, #pred=356875 01/16 01:37:43 - mmengine - INFO - known classes has 60791 predictions. 01/16 01:37:43 - mmengine - INFO - unknown classes has 356875 predictions. 01/16 01:37:43 - mmengine - INFO - Wilderness Impact: {50: 0.0} 01/16 01:37:43 - mmengine - INFO - Absolute OSE (total_num_unk_det_as_known): {50: 0.0} 01/16 01:37:43 - mmengine - INFO - total_num_unk 0 01/16 01:37:43 - mmengine - INFO - Prev class AP50: 3.7514281310398987 01/16 01:37:43 - mmengine - INFO - Prev class Precisions50: 9.6304934163019 01/16 01:37:43 - mmengine - INFO - Prev class Recall50: 13.31480328902648 01/16 01:37:43 - mmengine - INFO - Current class AP50: 22.635590289466926 01/16 01:37:43 - mmengine - INFO - Current class Precisions50: 17.38094251472993 01/16 01:37:43 - mmengine - INFO - Current class Recall50: 39.9013804206519 01/16 01:37:43 - mmengine - INFO - Known AP50: 19.48822992972909 01/16 01:37:43 - mmengine - INFO - Known Precisions50: 16.08920099832526 01/16 01:37:43 - mmengine - INFO - Known Recall50: 35.47028423204767 01/16 01:37:43 - mmengine - INFO - Unknown AP50: 0.0 01/16 01:37:43 - mmengine - INFO - Unknown Precisions50: 0.0 01/16 01:37:43 - mmengine - INFO - Unknown Recall50: 0.0
在训练task2过程中,task1 5类的评测指标没有变过。task2的指标有改变。
模型训练好后,我分别用yolo_uniow_l_lora_bn_1e-3_20e_8gpus_koala_koala_train_task1和yolo_uniow_l_lora_bn_1e-3_20e_8gpus_koala_koala_train_task2里的best模型评测烟火数据(task1),task2里best模型评测效果有一些下降。 但是我用这两个模型推理人车数据(task2)时,yolo_uniow_l_lora_bn_1e-3_20e_8gpus_koala_koala_train_task1里的best模型能推理出烟火5类和unknow(人车和其他目标都是unknow),这个能理解,重点是用yolo_uniow_l_lora_bn_1e-3_20e_8gpus_koala_koala_train_task2预测人车数据集,也只能推理出烟火5类,人车根本就检测不到了,少许目标结果是第六类,但是标签也是不对的。
The text was updated successfully, but these errors were encountered:
我问题解决了,在推理task2人车数据集时,需要将数据配置文件中的owod_task = {{'$TASK:1'}} 改成owod_task = {{'$TASK:2'}}
Sorry, something went wrong.
No branches or pull requests
烟火数据task1,5类,人车数据集task2,25类, "task_list": [0, 5, 30],
训练task1过程中:
训练task2过程中:
在训练task2过程中,task1 5类的评测指标没有变过。task2的指标有改变。
模型训练好后,我分别用yolo_uniow_l_lora_bn_1e-3_20e_8gpus_koala_koala_train_task1和yolo_uniow_l_lora_bn_1e-3_20e_8gpus_koala_koala_train_task2里的best模型评测烟火数据(task1),task2里best模型评测效果有一些下降。
但是我用这两个模型推理人车数据(task2)时,yolo_uniow_l_lora_bn_1e-3_20e_8gpus_koala_koala_train_task1里的best模型能推理出烟火5类和unknow(人车和其他目标都是unknow),这个能理解,重点是用yolo_uniow_l_lora_bn_1e-3_20e_8gpus_koala_koala_train_task2预测人车数据集,也只能推理出烟火5类,人车根本就检测不到了,少许目标结果是第六类,但是标签也是不对的。
The text was updated successfully, but these errors were encountered: