We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
第一步我运行多次,将object.npy读取出来发现前后两次的数值不一样,同样task的npy也不一样。 如果我任务task1是人车,task2是烟火,执行第一步,第二步,第三步和第四步。 当我交换task顺序,task1是烟火,task2是人车时,我执行第一步,可以不执行第二步和第三步吗,直接使用交换任务顺序之前得到的object_tuned.npy,直接执行第四步,我看跳过第二步和第三步,直接执行第四步也能收敛。
第一步执行多次为什么提取的特征不一样,会对后面步骤有影响吗,不想每次都执行第二步和第三步,第二步训练费时
The text was updated successfully, but these errors were encountered:
感谢您的关注。第二步和第三步应该是和open-world task无关的,只需要运行一次即可。您可以在提取特征代码里加入model.eval()试试保证提取特征的稳定性。我们后续也对代码做相应的更新,谢谢!
model.eval()
Sorry, something went wrong.
No branches or pull requests
第一步我运行多次,将object.npy读取出来发现前后两次的数值不一样,同样task的npy也不一样。
如果我任务task1是人车,task2是烟火,执行第一步,第二步,第三步和第四步。
当我交换task顺序,task1是烟火,task2是人车时,我执行第一步,可以不执行第二步和第三步吗,直接使用交换任务顺序之前得到的object_tuned.npy,直接执行第四步,我看跳过第二步和第三步,直接执行第四步也能收敛。
第一步执行多次为什么提取的特征不一样,会对后面步骤有影响吗,不想每次都执行第二步和第三步,第二步训练费时
The text was updated successfully, but these errors were encountered: