Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OWOD多个task训练后测试效果不理想 #13

Open
wl654655902 opened this issue Jan 21, 2025 · 0 comments
Open

OWOD多个task训练后测试效果不理想 #13

wl654655902 opened this issue Jan 21, 2025 · 0 comments

Comments

@wl654655902
Copy link

task1:人车25类,task2:烟火5类
最后两个epoch的评测分别是:

person                                  [00]: AP50=18.907, #pred=11432
car                                     [01]: AP50=49.915, #pred=17987
pickup truck                            [02]: AP50=12.394, #pred=153
minibus                                 [03]: AP50=26.414, #pred=1832
motorhome                               [04]: AP50=0.000, #pred=0
truck                                   [05]: AP50=41.789, #pred=10869
forklift                                [06]: AP50=2.242, #pred=82
pushdozer                               [07]: AP50=24.122, #pred=889
crane                                   [08]: AP50=34.870, #pred=291
road roller                             [09]: AP50=12.273, #pred=77
excavator                               [10]: AP50=44.692, #pred=952
mixer truck                             [11]: AP50=35.062, #pred=640
oil tank truck                          [12]: AP50=15.678, #pred=247
watering cart                           [13]: AP50=18.945, #pred=300
mixer truck                             [14]: AP50=0.000, #pred=0
fire fighting truck                     [15]: AP50=22.007, #pred=102
garbage truck                           [16]: AP50=0.000, #pred=62
bus                                     [17]: AP50=31.796, #pred=429
tractors                                [18]: AP50=10.476, #pred=9
bicycle                                 [19]: AP50=37.750, #pred=419
electric scooter                        [20]: AP50=0.000, #pred=2
motorbike                               [21]: AP50=37.470, #pred=2551
tricycle                                [22]: AP50=19.092, #pred=1410
train                                   [23]: AP50=70.461, #pred=123
other                                   [24]: AP50=4.537, #pred=2470
smoke                                   [25]: AP50=11.684, #pred=4877
fire                                    [26]: AP50=4.240, #pred=1942
cloud                                   [27]: AP50=1.390, #pred=53
fog                                     [28]: AP50=0.000, #pred=195
chimney                                 [29]: AP50=0.451, #pred=435
unknown                                 [30]: AR50=0.000, #pred=344874
01/17 00:57:02 - mmengine - INFO - known classes has 60830 predictions.
01/17 00:57:02 - mmengine - INFO - unknown classes has 344874 predictions.
01/17 00:57:02 - mmengine - INFO - Wilderness Impact: {50: 0.0}
01/17 00:57:02 - mmengine - INFO - Absolute OSE (total_num_unk_det_as_known): {50: 0.0}
01/17 00:57:02 - mmengine - INFO - total_num_unk 0
01/17 00:57:02 - mmengine - INFO - Prev class AP50: 22.835738700029136
01/17 00:57:02 - mmengine - INFO - Prev class Precisions50: 17.36332553942016
01/17 00:57:02 - mmengine - INFO - Prev class Recall50: 40.26247657567848
01/17 00:57:02 - mmengine - INFO - Current class AP50: 3.552976728791721
01/17 00:57:02 - mmengine - INFO - Current class Precisions50: 9.496200795228047
01/17 00:57:02 - mmengine - INFO - Current class Recall50: 12.623674063553134
01/17 00:57:02 - mmengine - INFO - Known AP50: 19.621945038156237
01/17 00:57:02 - mmengine - INFO - Known Precisions50: 16.052138082054807
01/17 00:57:02 - mmengine - INFO - Known Recall50: 35.65600949032425
01/17 00:57:02 - mmengine - INFO - Unknown AP50: 0.0
01/17 00:57:02 - mmengine - INFO - Unknown Precisions50: 0.0
01/17 00:57:02 - mmengine - INFO - Unknown Recall50: 0.0
person                                  [00]: AP50=18.907, #pred=11432
car                                     [01]: AP50=49.915, #pred=17987
pickup truck                            [02]: AP50=12.394, #pred=153
minibus                                 [03]: AP50=26.414, #pred=1832
motorhome                               [04]: AP50=0.000, #pred=0
truck                                   [05]: AP50=41.789, #pred=10869
forklift                                [06]: AP50=2.242, #pred=82
pushdozer                               [07]: AP50=24.122, #pred=889
crane                                   [08]: AP50=34.870, #pred=291
road roller                             [09]: AP50=12.273, #pred=77
excavator                               [10]: AP50=44.692, #pred=952
mixer truck                             [11]: AP50=35.062, #pred=640
oil tank truck                          [12]: AP50=15.678, #pred=247
watering cart                           [13]: AP50=18.945, #pred=300
mixer truck                             [14]: AP50=0.000, #pred=0
fire fighting truck                     [15]: AP50=22.007, #pred=102
garbage truck                           [16]: AP50=0.000, #pred=62
bus                                     [17]: AP50=31.796, #pred=429
tractors                                [18]: AP50=10.476, #pred=9
bicycle                                 [19]: AP50=37.750, #pred=419
electric scooter                        [20]: AP50=0.000, #pred=2
motorbike                               [21]: AP50=37.470, #pred=2551
tricycle                                [22]: AP50=19.092, #pred=1410
train                                   [23]: AP50=70.461, #pred=123
other                                   [24]: AP50=4.537, #pred=2470
smoke                                   [25]: AP50=11.672, #pred=4916
fire                                    [26]: AP50=4.230, #pred=1961
cloud                                   [27]: AP50=1.353, #pred=43
fog                                     [28]: AP50=0.000, #pred=182
chimney                                 [29]: AP50=0.426, #pred=444
unknown                                 [30]: AR50=0.000, #pred=345066
01/17 00:58:17 - mmengine - INFO - known classes has 60874 predictions.
01/17 00:58:17 - mmengine - INFO - unknown classes has 345066 predictions.
01/17 00:58:17 - mmengine - INFO - Wilderness Impact: {50: 0.0}
01/17 00:58:17 - mmengine - INFO - Absolute OSE (total_num_unk_det_as_known): {50: 0.0}
01/17 00:58:17 - mmengine - INFO - total_num_unk 0
01/17 00:58:17 - mmengine - INFO - Prev class AP50: 22.835738700029136
01/17 00:58:17 - mmengine - INFO - Prev class Precisions50: 17.36332553942016
01/17 00:58:17 - mmengine - INFO - Prev class Recall50: 40.26247657567848
01/17 00:58:17 - mmengine - INFO - Current class AP50: 3.5363268206818597
01/17 00:58:17 - mmengine - INFO - Current class Precisions50: 9.955457272587786
01/17 00:58:17 - mmengine - INFO - Current class Recall50: 12.634267283836007
01/17 00:58:17 - mmengine - INFO - Known AP50: 19.619170053471258
01/17 00:58:17 - mmengine - INFO - Known Precisions50: 16.12868082828143
01/17 00:58:17 - mmengine - INFO - Known Recall50: 35.65777502703807
01/17 00:58:17 - mmengine - INFO - Unknown AP50: 0.0
01/17 00:58:17 - mmengine - INFO - Unknown Precisions50: 0.0
01/17 00:58:17 - mmengine - INFO - Unknown Recall50: 0.0

task1的指标没有变,task2的指标变化,
我看代码里应该是使用task1训练的best模型评测task1,在task1的best基础上用task2数据训练,用task2的best模型评测task2。
但是我用task2的best模型去测试task1的数据,发现task1上的表现比直接用task1的best上模型测的效果差了很多,在task1的map上下降了9个点,R下降不多,P下降的很多,说明用task2数据微调后的模型对task1影响很大,我可视化两次结果,发现目标还是检测的到(R变化不大),主要是用task2微调后,目标的class错误率提升了(P下降多)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant