forked from junzis/meteo-particle-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmp.py
484 lines (395 loc) · 16.9 KB
/
mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import pandas as pd
import numpy as np
from lib import aero
import datetime
import matplotlib.pyplot as plt
import warnings
warnings.simplefilter("ignore")
class MeteoParticleModel:
def __init__(self, lat0, lon0, tstep=1):
self.lat0 = lat0
self.lon0 = lon0
self.tstep = tstep
self.AREA_XY = (-300, 300) # Area - xy, km
self.AREA_Z = (0, 12) # Altitude - km
self.GRID_BOND_XY = 20 # neighborhood xy, +/- km
self.GRID_BOND_Z = 0.5 # neighborhood z, +/- km
self.TEMP_Z_BUFFER = 0.2 # neighborhood z (temp), +/- km
self.N_AC_PTCS = 300 # particles per aircraft
self.N_MIN_PTC_TO_COMPUTE = 10 # number of particles to compute
self.CONF_BOUND = (0.0, 1.0) # confident normalization
self.AGING_SIGMA = 180.0 # Particle aging parameter, seconds
self.PTC_DIST_STRENGTH_SIGMA = 30.0 # Weighting parameter - distance, km
self.PTC_WALK_XY_SIGMA = 5.0 # Particle random walk - xy, km
self.PTC_WALK_Z_SIGMA = 0.1 # Particle random walk - z, km
self.PTC_VW_VARY_SIGMA = 0.0002 # Particle initialization wind variation, km/s
self.PTC_TEMP_VARY_SIGMA = 0.1 # Particle initialization temp variation, K
self.ACCEPT_PROB_FACTOR = 3 # Measurement acceptance probability factor
self.PTC_WALK_K = 10 # Particle random walk factor
self.reset_model()
def reset_model(self):
# aicraft
self.AC_X = np.array([])
self.AC_Y = np.array([])
self.AC_Z = np.array([])
self.AC_WX = np.array([])
self.AC_WY = np.array([])
self.AC_TEMP = np.array([])
# particles
self.PTC_X = np.array([]) # current position of particles
self.PTC_Y = np.array([])
self.PTC_Z = np.array([])
self.PTC_WX = np.array([]) # particles weather state
self.PTC_WY = np.array([])
self.PTC_TEMP = np.array([])
self.PTC_AGE = np.array([])
self.PTC_X0 = np.array([]) # origin positions of particles
self.PTC_Y0 = np.array([])
self.PTC_Z0 = np.array([])
# misc.
self.snapshots = {}
def resample(self):
mask1 = self.PTC_X > self.AREA_XY[0] - self.GRID_BOND_XY
mask1 &= self.PTC_X < self.AREA_XY[1] + self.GRID_BOND_XY
mask1 &= self.PTC_Y > self.AREA_XY[0] - self.GRID_BOND_XY
mask1 &= self.PTC_Y < self.AREA_XY[1] + self.GRID_BOND_XY
mask1 &= self.PTC_Z > self.AREA_Z[0]
mask1 &= self.PTC_Z < self.AREA_Z[1]
prob = np.exp(-0.5 * self.PTC_AGE ** 2 / self.AGING_SIGMA ** 2)
choice = np.random.random(len(self.PTC_X))
mask2 = prob > choice
mask = mask1 & mask2
return np.where(mask)[0]
def ptc_weights(self, x0, y0, z0, mask):
"""particle weights are calculated as gaussian function
of distances of particles to a grid point, particle age,
and particle distance from its origin.
"""
ptc_xs = self.PTC_X[mask]
ptc_ys = self.PTC_Y[mask]
ptc_zs = self.PTC_Z[mask]
ptc_x0s = self.PTC_X0[mask]
ptc_y0s = self.PTC_Y0[mask]
ptc_z0s = self.PTC_Z0[mask]
d = np.sqrt((ptc_xs - x0) ** 2 + (ptc_ys - y0) ** 2 + (ptc_zs - z0) ** 2)
fd = np.exp(-1 * d ** 2 / (2 * self.PTC_DIST_STRENGTH_SIGMA ** 2))
ptc_d0s = np.sqrt(
(ptc_xs - ptc_x0s) ** 2 + (ptc_ys - ptc_y0s) ** 2 + (ptc_zs - ptc_z0s) ** 2
)
fd0 = np.exp(-1 * ptc_d0s ** 2 / (2 * self.PTC_DIST_STRENGTH_SIGMA ** 2))
weights = fd * fd0
return weights
def scaled_confidence(self, l):
"""kernel function to scale confidence values"""
a, b = self.CONF_BOUND
l = np.array(l)
lscale = (b - a) * (l - np.min(l)) / (np.nanmax(l) - np.nanmin(l)) + a
return lscale
def construct(self, coords=None, xyz=True, confidence=True, grids=10):
if coords is not None:
if xyz:
coords_xs, coords_ys, coords_zs = coords
else:
lat, lon, alt = coords
bearings = aero.bearing(
self.lat0, self.lon0, np.asarray(lat), np.asarray(lon)
)
distances = aero.distance(
self.lat0, self.lon0, np.asarray(lat), np.asarray(lon)
)
coords_xs = distances * np.sin(np.radians(bearings)) / 1000.0
coords_ys = distances * np.cos(np.radians(bearings)) / 1000.0
coords_zs = np.asarray(alt) * aero.ft / 1000.0
else:
xs = np.arange(
self.AREA_XY[0],
self.AREA_XY[1] + 1,
(self.AREA_XY[1] - self.AREA_XY[0]) / grids,
)
ys = np.arange(
self.AREA_XY[0],
self.AREA_XY[1] + 1,
(self.AREA_XY[1] - self.AREA_XY[0]) / grids,
)
zs = np.linspace(self.AREA_Z[0] + 1, self.AREA_Z[1], 12)
xx, yy, zz = np.meshgrid(xs, ys, zs)
coords_xs = xx.flatten()
coords_ys = yy.flatten()
coords_zs = zz.flatten()
coords_wx = []
coords_wy = []
coords_temp = []
coords_ptc_wei = []
coords_ptc_num = []
coords_ptc_w_hmg = []
coords_ptc_t_hmg = []
coords_ptc_str = []
for x, y, z in zip(coords_xs, coords_ys, coords_zs):
mask1 = (
(self.PTC_X > x - self.GRID_BOND_XY)
& (self.PTC_X < x + self.GRID_BOND_XY)
& (self.PTC_Y > y - self.GRID_BOND_XY)
& (self.PTC_Y < y + self.GRID_BOND_XY)
& (self.PTC_Z > z - self.GRID_BOND_Z)
& (self.PTC_Z < z + self.GRID_BOND_Z)
)
# additional mask for temperature, only originated in similar level
mask2 = (
mask1
& (self.PTC_Z0 > z - self.TEMP_Z_BUFFER)
& (self.PTC_Z0 < z + self.TEMP_Z_BUFFER)
)
n = len(self.PTC_X[mask1])
if n > self.N_MIN_PTC_TO_COMPUTE:
w = self.ptc_weights(x, y, z, mask1)
wsum = np.sum(w)
if wsum < 1e-100:
# incase of all weights becomes almost zero
wx = np.nan
wy = np.nan
else:
wx = np.sum(w * self.PTC_WX[mask1]) / wsum
wy = np.sum(w * self.PTC_WY[mask1]) / wsum
w2 = self.ptc_weights(x, y, z, mask2)
wsum2 = np.sum(w2)
if wsum2 < 1e-100:
# incase of all weights becomes almost zero
temp = np.nan
else:
temp = np.sum(w2 * self.PTC_TEMP[mask2]) / wsum2
if confidence:
strs = 1 / (np.mean(self.PTC_AGE[mask1]) + 1e-100)
w_hmgs = np.linalg.norm(
np.cov([self.PTC_WX[mask1], self.PTC_WY[mask1]])
)
w_hmgs = 0 if np.isnan(w_hmgs) else w_hmgs
t_hmgs = np.std(self.PTC_TEMP[mask2])
else:
w = 0.0
wx = np.nan
wy = np.nan
temp = np.nan
if confidence:
t_hmgs = 0.0
w_hmgs = 0.0
strs = 0.0
coords_wx.append(wx)
coords_wy.append(wy)
coords_temp.append(temp)
if confidence:
coords_ptc_num.append(n)
coords_ptc_wei.append(np.mean(w))
coords_ptc_str.append(strs)
coords_ptc_t_hmg.append(t_hmgs)
coords_ptc_w_hmg.append(w_hmgs)
# compute confidence at each grid point, based on:
# particle numbers, mean weights, uniformness of particle headings
if confidence:
fw = self.scaled_confidence(coords_ptc_wei)
fn = self.scaled_confidence(coords_ptc_num)
fh_w = self.scaled_confidence(coords_ptc_w_hmg)
fh_t = self.scaled_confidence(coords_ptc_t_hmg)
fs = self.scaled_confidence(coords_ptc_str)
coords_w_confs = (fw + fn + fh_w + fs) / 4.0
coords_t_confs = (fw + fn + fh_t + fs) / 4.0
else:
coords_w_confs = None
coords_t_confs = None
return (
np.array(coords_xs),
np.array(coords_ys),
np.array(coords_zs),
np.array(coords_wx),
np.array(coords_wy),
np.array(coords_temp),
np.array(coords_w_confs),
np.array(coords_t_confs),
)
def prob_ac_accept(self):
n0 = len(self.AC_X)
probs = np.ones(n0)
XLo = self.AC_X - 100
XHi = self.AC_X + 100
YLo = self.AC_Y - 100
YHi = self.AC_Y + 100
ZLo = self.AC_Z - self.GRID_BOND_Z
ZHi = self.AC_Z + self.GRID_BOND_Z
for i in range(n0):
acwx, acwy, actemp, xlo, xhi, ylo, yhi, zlo, zhi = (
self.AC_WX[i],
self.AC_WY[i],
self.AC_TEMP[i],
XLo[i],
XHi[i],
YLo[i],
YHi[i],
ZLo[i],
ZHi[i],
)
mask_w_ptc = (
(self.PTC_X > xlo)
& (self.PTC_X < xhi)
& (self.PTC_Y > ylo)
& (self.PTC_Y < yhi)
& (self.PTC_Z > zlo)
& (self.PTC_Z < zhi)
)
mask_w_obs = (
(self.AC_X > xlo)
& (self.AC_X < xhi)
& (self.AC_Y > ylo)
& (self.AC_Y < yhi)
& (self.AC_Z > zlo)
& (self.AC_Z < zhi)
)
mu_wx = np.mean(self.PTC_WX[mask_w_ptc])
mu_wy = np.mean(self.PTC_WY[mask_w_ptc])
std_wx = np.std(self.PTC_WX[mask_w_ptc])
std_wy = np.std(self.PTC_WY[mask_w_ptc])
mask_temp = (self.PTC_Z0 > zlo) & (self.PTC_Z0 < zhi)
mu_temp = np.mean(self.PTC_TEMP[mask_temp])
std_temp = np.std(self.PTC_TEMP[mask_temp])
mus = np.matrix([[mu_wx, mu_wy, mu_temp]])
stds = np.array([std_wx, std_wy, std_temp]) * self.ACCEPT_PROB_FACTOR
cov = np.matrix(np.zeros((3, 3)))
np.fill_diagonal(cov, stds ** 2)
x = np.matrix([[acwx, acwy, actemp]])
# mus = np.matrix([[mu_wx, mu_wy]])
# stds = np.array([std_wx, std_wy]) * self.ACCEPT_PROB_FACTOR
# cov = np.matrix(np.zeros((2, 2)))
# np.fill_diagonal(cov, stds**2)
# x = np.matrix([[acwx, acwy]])
try:
dx = x - mus
cov_inv = np.linalg.inv(cov)
prob = np.exp(-0.5 * dx * cov_inv * dx.T)
if not np.isnan(prob):
probs[i] = prob[0, 0]
except:
continue
# print(probs)
choices = np.random.random(n0)
mask = probs > choices
self.AC_X = self.AC_X[mask]
self.AC_Y = self.AC_Y[mask]
self.AC_Z = self.AC_Z[mask]
self.AC_WX = self.AC_WX[mask]
self.AC_WY = self.AC_WY[mask]
self.AC_TEMP = self.AC_TEMP[mask]
n1 = len(self.AC_X)
return n0, n1
def sample(self, weather, acceptprob=True):
weather = pd.DataFrame(weather)
bearings = aero.bearing(self.lat0, self.lon0, weather["lat"], weather["lon"])
distances = aero.distance(self.lat0, self.lon0, weather["lat"], weather["lon"])
weather.loc[:, "x"] = distances * np.sin(np.radians(bearings)) / 1000.0
weather.loc[:, "y"] = distances * np.cos(np.radians(bearings)) / 1000.0
weather.loc[:, "z"] = weather["alt"] * aero.ft / 1000.0
self.AC_X = np.asarray(weather["x"])
self.AC_Y = np.asarray(weather["y"])
self.AC_Z = np.asarray(weather["z"])
self.AC_WX = np.asarray(weather["wx"])
self.AC_WY = np.asarray(weather["wy"])
self.AC_TEMP = np.asarray(weather["temp"])
# add new particles
if acceptprob:
self.prob_ac_accept()
n0 = len(self.PTC_X)
n_new_ptc = len(self.AC_X) * self.N_AC_PTCS
self.PTC_X = np.append(self.PTC_X, np.zeros(n_new_ptc))
self.PTC_Y = np.append(self.PTC_Y, np.zeros(n_new_ptc))
self.PTC_Z = np.append(self.PTC_Z, np.zeros(n_new_ptc))
self.PTC_WX = np.append(self.PTC_WX, np.zeros(n_new_ptc))
self.PTC_WY = np.append(self.PTC_WY, np.zeros(n_new_ptc))
self.PTC_TEMP = np.append(self.PTC_TEMP, np.zeros(n_new_ptc))
self.PTC_AGE = np.append(self.PTC_AGE, np.zeros(n_new_ptc))
self.PTC_X0 = np.append(self.PTC_X0, np.zeros(n_new_ptc))
self.PTC_Y0 = np.append(self.PTC_Y0, np.zeros(n_new_ptc))
self.PTC_Z0 = np.append(self.PTC_Z0, np.zeros(n_new_ptc))
px = np.random.normal(0, self.PTC_WALK_XY_SIGMA / 2, n_new_ptc)
py = np.random.normal(0, self.PTC_WALK_XY_SIGMA / 2, n_new_ptc)
pz = np.random.normal(0, self.PTC_WALK_Z_SIGMA / 2, n_new_ptc)
pwx = np.random.normal(0, self.PTC_VW_VARY_SIGMA, n_new_ptc)
pwy = np.random.normal(0, self.PTC_VW_VARY_SIGMA, n_new_ptc)
ptemp = np.random.normal(0, self.PTC_TEMP_VARY_SIGMA, n_new_ptc)
for i, (x, y, z, wx, wy, temp) in enumerate(
zip(self.AC_X, self.AC_Y, self.AC_Z, self.AC_WX, self.AC_WY, self.AC_TEMP)
):
idx0 = i * self.N_AC_PTCS
idx1 = (i + 1) * self.N_AC_PTCS
self.PTC_X[n0 + idx0 : n0 + idx1] = x + px[idx0:idx1]
self.PTC_Y[n0 + idx0 : n0 + idx1] = y + py[idx0:idx1]
self.PTC_Z[n0 + idx0 : n0 + idx1] = z + pz[idx0:idx1]
self.PTC_WX[n0 + idx0 : n0 + idx1] = wx + pwx[idx0:idx1]
self.PTC_WY[n0 + idx0 : n0 + idx1] = wy + pwy[idx0:idx1]
self.PTC_TEMP[n0 + idx0 : n0 + idx1] = temp + ptemp[idx0:idx1]
self.PTC_AGE[n0 + idx0 : n0 + idx1] = np.zeros(self.N_AC_PTCS)
self.PTC_X0[n0 + idx0 : n0 + idx1] = x * np.ones(self.N_AC_PTCS)
self.PTC_Y0[n0 + idx0 : n0 + idx1] = y * np.ones(self.N_AC_PTCS)
self.PTC_Z0[n0 + idx0 : n0 + idx1] = z * np.ones(self.N_AC_PTCS)
# update existing particles, random walk motion model
n1 = len(self.PTC_X)
if n1 > 0:
ex = np.random.normal(0, self.PTC_WALK_XY_SIGMA, n1)
ey = np.random.normal(0, self.PTC_WALK_XY_SIGMA, n1)
self.PTC_X = (
self.PTC_X + self.PTC_WALK_K * self.PTC_WX / 1000.0 * self.tstep + ex
) # 1/1000 m/s -> km/s
self.PTC_Y = (
self.PTC_Y + self.PTC_WALK_K * self.PTC_WY / 1000.0 * self.tstep + ey
)
self.PTC_Z = self.PTC_Z + np.random.normal(0, self.PTC_WALK_Z_SIGMA, n1)
self.PTC_AGE = self.PTC_AGE + self.tstep
# cleanup particle
idx = self.resample()
self.PTC_X = self.PTC_X[idx]
self.PTC_Y = self.PTC_Y[idx]
self.PTC_Z = self.PTC_Z[idx]
self.PTC_WX = self.PTC_WX[idx]
self.PTC_WY = self.PTC_WY[idx]
self.PTC_TEMP = self.PTC_TEMP[idx]
self.PTC_AGE = self.PTC_AGE[idx]
self.PTC_X0 = self.PTC_X0[idx]
self.PTC_Y0 = self.PTC_Y0[idx]
self.PTC_Z0 = self.PTC_Z0[idx]
return
def legacy_run(
self, winds, tstart, tend, snapat=None, coords=None, xyz=False, debug=False
):
for t in range(tstart, tend, 1):
if debug:
if t % 30 == 0:
print("time:", t - tstart, "| particles:", len(self.PTC_X))
if (snapat is not None) and (t > tstart):
if t in snapat:
self.snapshots[t] = self.construct(coords=coords, xyz=xyz)
dt = datetime.datetime.utcfromtimestamp(t).strftime(
"%Y-%m-%d %H:%M"
)
print("winds grid snapshot at %s (%d)" % (dt, t))
w = winds[winds.ts.astype(int) == t]
self.sample(w)
def save_snapshot(self, t, coords=None, xyz=True, dir=None):
import os
thisdir = os.path.dirname(os.path.realpath(__file__))
data = self.construct(coords=coords, xyz=xyz)
x, y, z = data[0:3]
distance = np.sqrt(x ** 2 + y ** 2) * 1000
bearing = np.degrees(np.arctan2(x, y))
lat1, lon1 = aero.position(self.lat0, self.lon0, distance, bearing)
alt1 = z * 1000 / aero.ft
df = pd.DataFrame()
df["lat"] = lat1
df["lon"] = lon1
df["alt"] = alt1
df["windx"] = data[3]
df["windy"] = data[4]
df["temp"] = data[5]
df["wind_confidence"] = data[6]
df["temp_confidence"] = data[7]
if dir is None:
fout = thisdir + "/data/snapshots/snapshot_%s.csv" % t
else:
fout = dir + "/snapshot_%s.csv" % t
df.to_csv(fout, index=False)
return fout