-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontent_trans.py
52 lines (41 loc) · 1.58 KB
/
content_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import onnxruntime
import numpy as np
from cv2 import cv2
def crop_center(image):
"""Returns a cropped square image."""
shape = image.shape
new_shape = min(shape[0], shape[1])
offset_y = max(shape[0] - shape[1], 0) // 2
offset_x = max(shape[1] - shape[0], 0) // 2
image = image[offset_y:(offset_y+new_shape), offset_x:(offset_x+new_shape)]
return image.astype(np.float32)
# @functools.lru_cache(maxsize=None)
def load_image(npimage, image_size=(256, 256)):
"""Loads and preprocesses images."""
img = npimage
img = crop_center(img)
img = (cv2.resize(img, image_size) / 255.)
return img
def convert(content, style):
content = content[:, :, ::-1]
style = style[:, :, ::-1]
output_image_size = 384
content_img_size = (output_image_size, output_image_size)
style_img_size = (256, 256) # Recommended to keep it at 256.
content_image = load_image(content, content_img_size)[np.newaxis, ...]
style_image = load_image(style, style_img_size)
style_image = cv2.blur(style_image, (3, 3))[np.newaxis, ...]
session = onnxruntime.InferenceSession("models/style_transfer/fst.onnx")
session.get_modelmeta()
in_1 = session.get_inputs()[0].name
in_2 = session.get_inputs()[1].name
outs = session.get_outputs()[0].name
outputs = session.run(None, {in_1: content_image, in_2: style_image})
stylized_image = outputs[0]
return stylized_image[0][:, :, ::-1]
if __name__ == "__main__":
a = cv2.imread("content.jpg")
b = cv2.imread("style.jpg")
c = convert(a, b)
cv2.imshow("", c)
cv2.waitKey(0)