-
-
Notifications
You must be signed in to change notification settings - Fork 46.1k
/
binary_search.py
360 lines (300 loc) · 11.4 KB
/
binary_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#!/usr/bin/env python3
"""
Pure Python implementations of binary search algorithms
For doctests run the following command:
python3 -m doctest -v binary_search.py
For manual testing run:
python3 binary_search.py
"""
from __future__ import annotations
import bisect
def bisect_left(
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> int:
"""
Locates the first element in a sorted array that is larger or equal to a given
value.
It has the same interface as
https://docs.python.org/3/library/bisect.html#bisect.bisect_left .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to bisect
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
:return: index i such that all values in sorted_collection[lo:i] are < item and all
values in sorted_collection[i:hi] are >= item.
Examples:
>>> bisect_left([0, 5, 7, 10, 15], 0)
0
>>> bisect_left([0, 5, 7, 10, 15], 6)
2
>>> bisect_left([0, 5, 7, 10, 15], 20)
5
>>> bisect_left([0, 5, 7, 10, 15], 15, 1, 3)
3
>>> bisect_left([0, 5, 7, 10, 15], 6, 2)
2
"""
if hi < 0:
hi = len(sorted_collection)
while lo < hi:
mid = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
lo = mid + 1
else:
hi = mid
return lo
def bisect_right(
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> int:
"""
Locates the first element in a sorted array that is larger than a given value.
It has the same interface as
https://docs.python.org/3/library/bisect.html#bisect.bisect_right .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to bisect
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
:return: index i such that all values in sorted_collection[lo:i] are <= item and
all values in sorted_collection[i:hi] are > item.
Examples:
>>> bisect_right([0, 5, 7, 10, 15], 0)
1
>>> bisect_right([0, 5, 7, 10, 15], 15)
5
>>> bisect_right([0, 5, 7, 10, 15], 6)
2
>>> bisect_right([0, 5, 7, 10, 15], 15, 1, 3)
3
>>> bisect_right([0, 5, 7, 10, 15], 6, 2)
2
"""
if hi < 0:
hi = len(sorted_collection)
while lo < hi:
mid = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
lo = mid + 1
else:
hi = mid
return lo
def insort_left(
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> None:
"""
Inserts a given value into a sorted array before other values with the same value.
It has the same interface as
https://docs.python.org/3/library/bisect.html#bisect.insort_left .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to insert
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
Examples:
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 6)
>>> sorted_collection
[0, 5, 6, 7, 10, 15]
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item = (5, 5)
>>> insort_left(sorted_collection, item)
>>> sorted_collection
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item is sorted_collection[1]
True
>>> item is sorted_collection[2]
False
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 20)
>>> sorted_collection
[0, 5, 7, 10, 15, 20]
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_left(sorted_collection, 15, 1, 3)
>>> sorted_collection
[0, 5, 7, 15, 10, 15]
"""
sorted_collection.insert(bisect_left(sorted_collection, item, lo, hi), item)
def insort_right(
sorted_collection: list[int], item: int, lo: int = 0, hi: int = -1
) -> None:
"""
Inserts a given value into a sorted array after other values with the same value.
It has the same interface as
https://docs.python.org/3/library/bisect.html#bisect.insort_right .
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item to insert
:param lo: lowest index to consider (as in sorted_collection[lo:hi])
:param hi: past the highest index to consider (as in sorted_collection[lo:hi])
Examples:
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 6)
>>> sorted_collection
[0, 5, 6, 7, 10, 15]
>>> sorted_collection = [(0, 0), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item = (5, 5)
>>> insort_right(sorted_collection, item)
>>> sorted_collection
[(0, 0), (5, 5), (5, 5), (7, 7), (10, 10), (15, 15)]
>>> item is sorted_collection[1]
False
>>> item is sorted_collection[2]
True
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 20)
>>> sorted_collection
[0, 5, 7, 10, 15, 20]
>>> sorted_collection = [0, 5, 7, 10, 15]
>>> insort_right(sorted_collection, 15, 1, 3)
>>> sorted_collection
[0, 5, 7, 15, 10, 15]
"""
sorted_collection.insert(bisect_right(sorted_collection, item, lo, hi), item)
def binary_search(sorted_collection: list[int], item: int) -> int:
"""Pure implementation of a binary search algorithm in Python
Be careful collection must be ascending sorted otherwise, the result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of the found item or -1 if the item is not found
Examples:
>>> binary_search([0, 5, 7, 10, 15], 0)
0
>>> binary_search([0, 5, 7, 10, 15], 15)
4
>>> binary_search([0, 5, 7, 10, 15], 5)
1
>>> binary_search([0, 5, 7, 10, 15], 6)
-1
"""
if list(sorted_collection) != sorted(sorted_collection):
raise ValueError("sorted_collection must be sorted in ascending order")
left = 0
right = len(sorted_collection) - 1
while left <= right:
midpoint = left + (right - left) // 2
current_item = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
right = midpoint - 1
else:
left = midpoint + 1
return -1
def binary_search_std_lib(sorted_collection: list[int], item: int) -> int:
"""Pure implementation of a binary search algorithm in Python using stdlib
Be careful collection must be ascending sorted otherwise, the result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of the found item or -1 if the item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
-1
"""
if list(sorted_collection) != sorted(sorted_collection):
raise ValueError("sorted_collection must be sorted in ascending order")
index = bisect.bisect_left(sorted_collection, item)
if index != len(sorted_collection) and sorted_collection[index] == item:
return index
return -1
def binary_search_by_recursion(
sorted_collection: list[int], item: int, left: int = 0, right: int = -1
) -> int:
"""Pure implementation of a binary search algorithm in Python by recursion
Be careful collection must be ascending sorted otherwise, the result will be
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of the found item or -1 if the item is not found
Examples:
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 0, 0, 4)
0
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 15, 0, 4)
4
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 5, 0, 4)
1
>>> binary_search_by_recursion([0, 5, 7, 10, 15], 6, 0, 4)
-1
"""
if right < 0:
right = len(sorted_collection) - 1
if list(sorted_collection) != sorted(sorted_collection):
raise ValueError("sorted_collection must be sorted in ascending order")
if right < left:
return -1
midpoint = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(sorted_collection, item, left, midpoint - 1)
else:
return binary_search_by_recursion(sorted_collection, item, midpoint + 1, right)
def exponential_search(sorted_collection: list[int], item: int) -> int:
"""Pure implementation of an exponential search algorithm in Python
Resources used:
https://en.wikipedia.org/wiki/Exponential_search
Be careful collection must be ascending sorted otherwise, result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of the found item or -1 if the item is not found
the order of this algorithm is O(lg I) where I is index position of item if exist
Examples:
>>> exponential_search([0, 5, 7, 10, 15], 0)
0
>>> exponential_search([0, 5, 7, 10, 15], 15)
4
>>> exponential_search([0, 5, 7, 10, 15], 5)
1
>>> exponential_search([0, 5, 7, 10, 15], 6)
-1
"""
if list(sorted_collection) != sorted(sorted_collection):
raise ValueError("sorted_collection must be sorted in ascending order")
bound = 1
while bound < len(sorted_collection) and sorted_collection[bound] < item:
bound *= 2
left = bound // 2
right = min(bound, len(sorted_collection) - 1)
last_result = binary_search_by_recursion(
sorted_collection=sorted_collection, item=item, left=left, right=right
)
if last_result is None:
return -1
return last_result
searches = ( # Fastest to slowest...
binary_search_std_lib,
binary_search,
exponential_search,
binary_search_by_recursion,
)
if __name__ == "__main__":
import doctest
import timeit
doctest.testmod()
for search in searches:
name = f"{search.__name__:>26}"
print(f"{name}: {search([0, 5, 7, 10, 15], 10) = }") # type: ignore[operator]
print("\nBenchmarks...")
setup = "collection = range(1000)"
for search in searches:
name = search.__name__
print(
f"{name:>26}:",
timeit.timeit(
f"{name}(collection, 500)", setup=setup, number=5_000, globals=globals()
),
)
user_input = input("\nEnter numbers separated by comma: ").strip()
collection = sorted(int(item) for item in user_input.split(","))
target = int(input("Enter a single number to be found in the list: "))
result = binary_search(sorted_collection=collection, item=target)
if result == -1:
print(f"{target} was not found in {collection}.")
else:
print(f"{target} was found at position {result} of {collection}.")