diff --git a/searches/exponential_search.py b/searches/exponential_search.py new file mode 100644 index 000000000000..ed09b14e101c --- /dev/null +++ b/searches/exponential_search.py @@ -0,0 +1,113 @@ +#!/usr/bin/env python3 + +""" +Pure Python implementation of exponential search algorithm + +For more information, see the Wikipedia page: +https://en.wikipedia.org/wiki/Exponential_search + +For doctests run the following command: +python3 -m doctest -v exponential_search.py + +For manual testing run: +python3 exponential_search.py +""" + +from __future__ import annotations + + +def binary_search_by_recursion( + sorted_collection: list[int], item: int, left: int = 0, right: int = -1 +) -> int: + """Pure implementation of binary search algorithm in Python using recursion + + Be careful: the collection must be ascending sorted otherwise, the result will be + unpredictable. + + :param sorted_collection: some ascending sorted collection with comparable items + :param item: item value to search + :param left: starting index for the search + :param right: ending index for the search + :return: index of the found item or -1 if the item is not found + + Examples: + >>> binary_search_by_recursion([0, 5, 7, 10, 15], 0, 0, 4) + 0 + >>> binary_search_by_recursion([0, 5, 7, 10, 15], 15, 0, 4) + 4 + >>> binary_search_by_recursion([0, 5, 7, 10, 15], 5, 0, 4) + 1 + >>> binary_search_by_recursion([0, 5, 7, 10, 15], 6, 0, 4) + -1 + """ + if right < 0: + right = len(sorted_collection) - 1 + if list(sorted_collection) != sorted(sorted_collection): + raise ValueError("sorted_collection must be sorted in ascending order") + if right < left: + return -1 + + midpoint = left + (right - left) // 2 + + if sorted_collection[midpoint] == item: + return midpoint + elif sorted_collection[midpoint] > item: + return binary_search_by_recursion(sorted_collection, item, left, midpoint - 1) + else: + return binary_search_by_recursion(sorted_collection, item, midpoint + 1, right) + + +def exponential_search(sorted_collection: list[int], item: int) -> int: + """ + Pure implementation of an exponential search algorithm in Python. + For more information, refer to: + https://en.wikipedia.org/wiki/Exponential_search + + Be careful: the collection must be ascending sorted, otherwise the result will be + unpredictable. + + :param sorted_collection: some ascending sorted collection with comparable items + :param item: item value to search + :return: index of the found item or -1 if the item is not found + + The time complexity of this algorithm is O(log i) where i is the index of the item. + + Examples: + >>> exponential_search([0, 5, 7, 10, 15], 0) + 0 + >>> exponential_search([0, 5, 7, 10, 15], 15) + 4 + >>> exponential_search([0, 5, 7, 10, 15], 5) + 1 + >>> exponential_search([0, 5, 7, 10, 15], 6) + -1 + """ + if list(sorted_collection) != sorted(sorted_collection): + raise ValueError("sorted_collection must be sorted in ascending order") + + if sorted_collection[0] == item: + return 0 + + bound = 1 + while bound < len(sorted_collection) and sorted_collection[bound] < item: + bound *= 2 + + left = bound // 2 + right = min(bound, len(sorted_collection) - 1) + return binary_search_by_recursion(sorted_collection, item, left, right) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + + # Manual testing + user_input = input("Enter numbers separated by commas: ").strip() + collection = sorted(int(item) for item in user_input.split(",")) + target = int(input("Enter a number to search for: ")) + result = exponential_search(sorted_collection=collection, item=target) + if result == -1: + print(f"{target} was not found in {collection}.") + else: + print(f"{target} was found at index {result} in {collection}.")