-
Notifications
You must be signed in to change notification settings - Fork 2
/
TestSet.thy
65 lines (54 loc) · 2.08 KB
/
TestSet.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
theory TestSet
imports
"ODE_Solve_Keyword"
begin
declare [[SODE_solver = "fricas"]]
(*Previous dissertation tests:*)
ode_solve_thm "(λ (t::real) (x, y). (sqrt t, 3))" "{0<..}"
ode_solve_thm "(λ (t::real) (x, y). (t, x))"
ode_solve_thm "(λ (t::real) (x, y). (t+2, x+3))"
ode_solve_thm "(λ (t::real) (x, y). (-2-t, -x-3))"
ode_solve_thm "(λ (t::real) (x, y). (2*t, 3*x))"
ode_solve_thm "(λ (t::real) (x, y). (t/2, x/3))"
ode_solve_thm "(λ (t::real) (x, y). (2/t, 0))"
ode_solve_thm "(λ (t::real) (x, y). (exp(t), 3))"
ode_solve_thm "(λ (t::real) (x, y). (x, y))"
ode_solve_thm "(λ (t::real) (x, y). (ln t, x))"
ode_solve_thm "(λ (t::real) (x, y). (sin t, 3))"
ode_solve_thm "(λ (t::real) (x, y). (cos t, 3))"
ode_solve_thm "(λ (t::real) (x, y). (sinh t, 3))"
ode_solve_thm "(λ (t::real) (x, y). (cosh t, 3))"
(*Thomas' test set*)
ode_solve_thm "(λ (t::real) (x, y). (1/(2*x-1), 0))"
ode_solve_thm "(λ (t::real) (x, y). (x*y, 3))"
ode_solve_thm "(λ (t::real) (x, y). (2 * x + y + 1 + t^2, x))"
ode_solve_thm "(λ (t::real) (x, y). (tan(t), 1))" "({-pi/2<..<pi/2})"
ode_solve_thm "(λ (t::real) (x, y). (arcsin(t), 1))"
ode_solve_thm "(λ (t::real) (x, y). (t powr (1/4), 1))" "{0<..}"
ode_solve_thm "(λ (t::real) (x, y). (t powr sqrt 2, 1))" "{0<..}"
ode_solve_thm "(λ (t::real) (x, y, z). (x+y, y+2*z,x^2+1))"
(*Christian's test set*)
(*test_1*)
ode_solve_thm "\<lambda> t x . x"
(*test_2*)
ode_solve_thm "(\<lambda> t (x,y) . (-y,x))"
(*test_3*)
ode_solve_thm "(\<lambda> t x . sqrt(t))" "{0<..}"
(*test_4*)
ode_solve_thm "(\<lambda> t (v, h). (- 9.81, v))"
(*test_5*)
ode_solve_thm "(\<lambda> t (a,v,p) . (0,a,v))"
(*test_7*)
ode_solve_thm "(\<lambda> t (x,y). (t+2, x+3))"
(*test_6*)
ode_solve_thm "(\<lambda> t (px,py,dx,dy,s,\<omega>,a,r). (dx * s,dy * s,\<omega>*dy, -\<omega>*dx, a, a/r, 0, 0))"
ode_solve_thm "\<lambda> t x. x^2 - t"
(*test_8*)
ode_solve_thm "(\<lambda> t (x,y). (y, exp(t^2)))"
(*test_9 - this is a problem*)
ode_solve_thm "(\<lambda> t x. sin(x)/ln(x))"
(*test_10*)
ode_solve_thm "(\<lambda> t (x,y). (ln(t), x))"
(*test_11*)
ode_solve_thm "(\<lambda> t x. (x ^ 2))"
end