forked from fanxiule/CRD_Fusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_kitti.py
163 lines (143 loc) · 7.27 KB
/
predict_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import time
import argparse
import cv2
import numpy as np
import torch
import torch.nn.functional as f
from torch.utils.data import DataLoader
from datasets import KITTI2012TestDataset, KITTI2015TestDataset, Kitti2015Dataset, Kitti2012Dataset
from utils import post_process
from crd_fusion_net import CRDFusionNet
from data_preprocess import ConfGeneration
def parse_args():
"""
Parse options for predicting KITTI stereo
:return: options
"""
parser = argparse.ArgumentParser(description="CRD_Fusion KITTI Test Options")
parser.add_argument("--data_path", type=str, help="directory where datasets are saved",
default=os.getenv('data_path'))
# default=os.path.expanduser("~/Documents/Datasets/"))
parser.add_argument("--checkpt", type=str, help="directory to pretrained checkpoint files",
default="models/KITTI2015")
parser.add_argument("--log_dir", type=str, help="directory to save prediction", default="models")
parser.add_argument("--model_name", type=str, help="name of folder to save prediction",
default="crd_fusion_test")
parser.add_argument("--device", type=str, help="test device", choices=["cpu", "cuda"], default="cuda")
parser.add_argument("--dataset", type=str, help="select a KITTI test set", default="kitti2015_val",
choices=["kitti2015_test", "kitti2012_test", "kitti2015_val", "kitti2012_val"])
parser.add_argument("--max_disp", type=int, help="max disparity range according to the checkpt file", default=192)
parser.add_argument("--resized_height", type=int, help="image height after resizing", default=376)
parser.add_argument("--resized_width", type=int, help="image width after resizing", default=1248)
parser.add_argument("--conf_threshold", type=float, help="confidence threshold for raw disparity", default=0.8)
parser.add_argument("--occ_threshold", type=float, help="threshold for occlusion mask", default=0.8)
parser.add_argument("--post_processing", action="store_true", help="if set, post processing is applied")
parser.add_argument("--save_pred", action="store_true", help="if set, the predictions are saved")
return parser.parse_args()
def save_pred(pred_disp, occ, conf, frame_id, log_path):
"""
Save predictions
:param pred_disp: predicted disparity map
:param occ: occlusion mask
:param conf: confidence mask
:param frame_id: frame id to name the files
:param log_path: save directory
:return: None
"""
if not os.path.exists(log_path):
os.makedirs(log_path)
# save disp
pred_disp = pred_disp.detach().cpu().numpy()
pred_disp = np.squeeze(pred_disp)
pred_disp = pred_disp * 256
pred_disp[pred_disp == 0] = 1
pred_disp[pred_disp < 0] = 0
pred_disp[pred_disp > 65535] = 0
pred_disp = pred_disp.astype(np.uint16)
filename = os.path.join(log_path, frame_id)
cv2.imwrite(filename, pred_disp)
# save occ
occ = occ.detach().cpu().numpy()
occ = np.squeeze(occ)
filename = os.path.join(log_path, "occ_%s" % frame_id.replace(".png", ".npy"))
np.save(filename, occ)
# save conf
conf = conf.detach().cpu().numpy()
conf = np.squeeze(conf)
filename = os.path.join(log_path, "conf_%s" % frame_id.replace(".png", ".npy"))
np.save(filename, conf)
def predict(opts):
"""
Predict KITTI stereo
:param opts: options
:return: None
"""
log_path = os.path.join(opts.log_dir, opts.model_name)
feature_scale_list = [0, 1, 2, 3]
model = CRDFusionNet(feature_scale_list, opts.max_disp, opts.resized_height, opts.resized_width, False, True)
if opts.checkpt is not None and os.path.isdir(opts.checkpt):
model.load_model(opts.checkpt)
else:
model.init_model()
model.to(opts.device)
dataset_list = {
'kitti2015_test': KITTI2015TestDataset,
'kitti2012_test': KITTI2012TestDataset,
'kitti2015_val': Kitti2015Dataset,
'kitti2012_val': Kitti2012Dataset,
}
dataset = dataset_list[opts.dataset]
if "test" in opts.dataset:
data_path = os.path.join(opts.data_path, opts.dataset.replace("_test", ""))
predict_dataset = dataset(data_path, opts.max_disp, opts.resized_height, opts.resized_width,
opts.conf_threshold, True, False)
else:
data_path = os.path.join(opts.data_path, opts.dataset.replace("_val", ""))
predict_dataset = dataset(data_path, opts.max_disp, 1, opts.resized_height, opts.resized_width,
opts.conf_threshold, False, True, False)
predict_loader = DataLoader(predict_dataset, 1, False, num_workers=0, pin_memory=True, drop_last=False)
conf_gen = ConfGeneration(opts.device, True)
num_test_samples = len(predict_dataset)
print("Begin predicting %s" % opts.model_name)
print("Use checkpt in: %s" % opts.checkpt)
print("Save predicted disparity maps in %s" % log_path)
print("Save predictions: %r" % opts.save_pred)
print("Dataset: %s" % opts.dataset)
print("Input size: %d x %d" % (opts.resized_height, opts.resized_width))
print("Total number of test samples: %d" % num_test_samples)
print("Max disp: %d" % opts.max_disp)
print("Conf threshold: %.2f" % opts.conf_threshold)
print("Post processing: %r" % opts.post_processing)
print("-------------Start Prediction-------------")
duration = 0
model.eval()
with torch.no_grad():
for batch_id, inputs in enumerate(predict_loader):
for k, v in inputs.items():
if k != "frame_id" and k != "left_pad" and k != "top_pad":
inputs[k] = v.to(opts.device)
batch_start_time = time.time()
# confidence calculation is consistent to how it is done in preprocessing
inputs['mask'] = conf_gen.cal_confidence(
inputs['l_rgb_non_norm'][:, :, inputs['top_pad'][0]:, inputs['left_pad'][0]:],
inputs['r_rgb_non_norm'][:, :, inputs['top_pad'][0]:, inputs['left_pad'][0]:],
inputs['raw_disp_non_norm'][:, :, inputs['top_pad'][0]:, inputs['left_pad'][0]:])
inputs['mask'][inputs['mask'] < opts.conf_threshold] = 0
inputs['mask'] = f.pad(inputs['mask'], (inputs['left_pad'][0], 0, inputs['top_pad'][0], 0), 'replicate')
outputs = model(inputs['l_rgb'], inputs['r_rgb'], inputs['raw_disp'], inputs['mask'])
# undo padding on prediction
outputs['refined_disp0'] = outputs['refined_disp0'][:, :, inputs['top_pad'][0]:, inputs['left_pad'][0]:]
outputs['occ0'] = outputs['occ0'][:, :, inputs['top_pad'][0]:, inputs['left_pad'][0]:]
inputs['mask'] = inputs['mask'][:, :, inputs['top_pad'][0]:, inputs['left_pad'][0]:]
if opts.post_processing:
outputs['final_disp'] = post_process(outputs['refined_disp0'], outputs['occ0'], opts.occ_threshold)
else:
outputs['final_disp'] = outputs['refined_disp0']
duration += (time.time() - batch_start_time)
if opts.save_pred:
save_pred(outputs['final_disp'], outputs['occ0'], inputs['mask'], inputs['frame_id'][0], log_path)
print("Frame rate: %.4f" % (num_test_samples / duration))
if __name__ == "__main__":
args = parse_args()
predict(args)