-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
359 lines (279 loc) · 16.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import torch
import torch.utils.data as data
import torchnet as tnt
import numpy as np
from sklearn.model_selection import KFold
from sklearn.metrics import confusion_matrix
import os
import json
import pickle as pkl
import argparse
import pprint
from models.stclassifier import PseTae, PseLTae, PseGru, PseTempCNN
from dataset import PixelSetData, PixelSetData_preloaded
from learning.focal_loss import FocalLoss
from learning.weight_init import weight_init
from learning.metrics import mIou, confusion_matrix_analysis
def train_epoch(model, optimizer, criterion, data_loader, device, config):
acc_meter = tnt.meter.ClassErrorMeter(accuracy=True)
loss_meter = tnt.meter.AverageValueMeter()
y_true = []
y_pred = []
for i, (x, y) in enumerate(data_loader):
y_true.extend(list(map(int, y)))
x = recursive_todevice(x, device)
y = y.to(device)
optimizer.zero_grad()
out = model(x)
loss = criterion(out, y.long())
loss.backward()
optimizer.step()
pred = out.detach()
y_p = pred.argmax(dim=1).cpu().numpy()
y_pred.extend(list(y_p))
acc_meter.add(pred, y)
loss_meter.add(loss.item())
if (i + 1) % config['display_step'] == 0:
print('Step [{}/{}], Loss: {:.4f}, Acc : {:.2f}'.format(i + 1, len(data_loader), loss_meter.value()[0],
acc_meter.value()[0]))
epoch_metrics = {'train_loss': loss_meter.value()[0],
'train_accuracy': acc_meter.value()[0],
'train_IoU': mIou(y_true, y_pred, n_classes=config['num_classes'])}
return epoch_metrics
def evaluation(model, criterion, loader, device, config, mode='val'):
y_true = []
y_pred = []
acc_meter = tnt.meter.ClassErrorMeter(accuracy=True)
loss_meter = tnt.meter.AverageValueMeter()
for (x, y) in loader:
y_true.extend(list(map(int, y)))
x = recursive_todevice(x, device)
y = y.to(device)
with torch.no_grad():
prediction = model(x)
loss = criterion(prediction, y)
acc_meter.add(prediction, y)
loss_meter.add(loss.item())
y_p = prediction.argmax(dim=1).cpu().numpy()
y_pred.extend(list(y_p))
metrics = {'{}_accuracy'.format(mode): acc_meter.value()[0],
'{}_loss'.format(mode): loss_meter.value()[0],
'{}_IoU'.format(mode): mIou(y_true, y_pred, config['num_classes'])}
if mode == 'val':
return metrics
elif mode == 'test':
return metrics, confusion_matrix(y_true, y_pred, labels=list(range(config['num_classes'])))
def get_loaders(dt, kfold, config):
indices = list(range(len(dt)))
np.random.shuffle(indices)
kf = KFold(n_splits=kfold, shuffle=False)
indices_seq = list(kf.split(list(range(len(dt)))))
ntest = len(indices_seq[0][1])
loader_seq = []
for trainval, test_indices in indices_seq:
trainval = [indices[i] for i in trainval]
test_indices = [indices[i] for i in test_indices]
validation_indices = trainval[-ntest:]
train_indices = trainval[:-ntest]
train_sampler = data.sampler.SubsetRandomSampler(train_indices)
validation_sampler = data.sampler.SubsetRandomSampler(validation_indices)
test_sampler = data.sampler.SubsetRandomSampler(test_indices)
train_loader = data.DataLoader(dt, batch_size=config['batch_size'],
sampler=train_sampler,
num_workers=config['num_workers'])
validation_loader = data.DataLoader(dt, batch_size=config['batch_size'],
sampler=validation_sampler,
num_workers=config['num_workers'])
test_loader = data.DataLoader(dt, batch_size=config['batch_size'],
sampler=test_sampler,
num_workers=config['num_workers'])
loader_seq.append((train_loader, validation_loader, test_loader))
return loader_seq
def recursive_todevice(x, device):
if isinstance(x, torch.Tensor):
return x.to(device)
else:
return [recursive_todevice(c, device) for c in x]
def prepare_output(config):
os.makedirs(config['res_dir'], exist_ok=True)
for fold in range(1, config['kfold'] + 1):
os.makedirs(os.path.join(config['res_dir'], 'Fold_{}'.format(fold)), exist_ok=True)
def checkpoint(fold, log, config):
with open(os.path.join(config['res_dir'], 'Fold_{}'.format(fold), 'trainlog.json'), 'w') as outfile:
json.dump(log, outfile, indent=4)
def save_results(fold, metrics, conf_mat, config):
with open(os.path.join(config['res_dir'], 'Fold_{}'.format(fold), 'test_metrics.json'), 'w') as outfile:
json.dump(metrics, outfile, indent=4)
pkl.dump(conf_mat, open(os.path.join(config['res_dir'], 'Fold_{}'.format(fold), 'conf_mat.pkl'), 'wb'))
def overall_performance(config):
cm = np.zeros((config['num_classes'], config['num_classes']))
for fold in range(1, config['kfold'] + 1):
cm += pkl.load(open(os.path.join(config['res_dir'], 'Fold_{}'.format(fold), 'conf_mat.pkl'), 'rb'))
_, perf = confusion_matrix_analysis(cm)
print('Overall performance:')
print('Acc: {}, IoU: {}'.format(perf['Accuracy'], perf['MACRO_IoU']))
with open(os.path.join(config['res_dir'], 'overall.json'), 'w') as file:
file.write(json.dumps(perf, indent=4))
def main(config):
np.random.seed(config['rdm_seed'])
torch.manual_seed(config['rdm_seed'])
prepare_output(config)
mean_std = pkl.load(open(config['dataset_folder'] + '/S2-2017-T31TFM-meanstd.pkl', 'rb'))
extra = 'geomfeat' if config['geomfeat'] else None
# We only consider the subset of classes with more than 100 samples in the S2-Agri dataset
subset = [1, 3, 4, 5, 6, 8, 9, 12, 13, 14, 16, 18, 19, 23, 28, 31, 33, 34, 36, 39]
if config['preload']:
dt = PixelSetData_preloaded(config['dataset_folder'], labels='label_44class', npixel=config['npixel'],
sub_classes=subset,
norm=mean_std,
extra_feature=extra)
else:
dt = PixelSetData(config['dataset_folder'], labels='label_44class', npixel=config['npixel'],
sub_classes=subset,
norm=mean_std,
extra_feature=extra)
device = torch.device(config['device'])
loaders = get_loaders(dt, config['kfold'], config)
for fold, (train_loader, val_loader, test_loader) in enumerate(loaders):
print('Starting Fold {}'.format(fold + 1))
print('Train {}, Val {}, Test {}'.format(len(train_loader), len(val_loader), len(test_loader)))
if config['tae']:
model_config = dict(input_dim=config['input_dim'], mlp1=config['mlp1'], pooling=config['pooling'],
mlp2=config['mlp2'], n_head=config['n_head'], d_k=config['d_k'], mlp3=config['mlp3'],
dropout=config['dropout'], T=config['T'], len_max_seq=config['lms'],
positions=dt.date_positions if config['positions'] == 'bespoke' else None,
mlp4=config['mlp4'], d_model=config['d_model'])
if config['geomfeat']:
model_config.update(with_extra=True, extra_size=4)
else:
model_config.update(with_extra=False, extra_size=None)
model = PseTae(**model_config)
elif config['gru']:
model_config = dict(input_dim=config['input_dim'], mlp1=config['mlp1'], pooling=config['pooling'],
mlp2=config['mlp2'], hidden_dim=config['hidden_dim'],
positions=dt.date_positions if config['positions'] == 'bespoke' else None,
mlp4=config['mlp4'])
if config['geomfeat']:
model_config.update(with_extra=True, extra_size=4)
else:
model_config.update(with_extra=False, extra_size=None)
model = PseGru(**model_config)
elif config['tcnn']:
model_config = dict(input_dim=config['input_dim'], mlp1=config['mlp1'], pooling=config['pooling'],
mlp2=config['mlp2'], nker=config['nker'], mlp3=config['mlp3'],
positions=dt.date_positions if config['positions'] == 'bespoke' else None,
mlp4=config['mlp4'])
if config['geomfeat']:
model_config.update(with_extra=True, extra_size=4)
else:
model_config.update(with_extra=False, extra_size=None)
model = PseTempCNN(**model_config)
else:
model_config = dict(input_dim=config['input_dim'], mlp1=config['mlp1'], pooling=config['pooling'],
mlp2=config['mlp2'], n_head=config['n_head'], d_k=config['d_k'], mlp3=config['mlp3'],
dropout=config['dropout'], T=config['T'], len_max_seq=config['lms'],
positions=dt.date_positions if config['positions'] == 'bespoke' else None,
mlp4=config['mlp4'], d_model=config['d_model'])
if config['geomfeat']:
model_config.update(with_extra=True, extra_size=4)
else:
model_config.update(with_extra=False, extra_size=None)
model = PseLTae(**model_config)
config['N_params'] = model.param_ratio()
with open(os.path.join(config['res_dir'], 'conf.json'), 'w') as file:
file.write(json.dumps(config, indent=4))
model = model.to(device)
model.apply(weight_init)
optimizer = torch.optim.Adam(model.parameters())
criterion = FocalLoss(config['gamma'])
trainlog = {}
best_mIoU = 0
for epoch in range(1, config['epochs'] + 1):
print('EPOCH {}/{}'.format(epoch, config['epochs']))
model.train()
train_metrics = train_epoch(model, optimizer, criterion, train_loader, device=device, config=config)
print('Validation . . . ')
model.eval()
val_metrics = evaluation(model, criterion, val_loader, device=device, config=config, mode='val')
print('Loss {:.4f}, Acc {:.2f}, IoU {:.4f}'.format(val_metrics['val_loss'], val_metrics['val_accuracy'],
val_metrics['val_IoU']))
trainlog[epoch] = {**train_metrics, **val_metrics}
checkpoint(fold + 1, trainlog, config)
if val_metrics['val_IoU'] >= best_mIoU:
best_mIoU = val_metrics['val_IoU']
torch.save({'epoch': epoch, 'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()},
os.path.join(config['res_dir'], 'Fold_{}'.format(fold + 1), 'model.pth.tar'))
print('Testing best epoch . . .')
model.load_state_dict(
torch.load(os.path.join(config['res_dir'], 'Fold_{}'.format(fold + 1), 'model.pth.tar'))['state_dict'])
model.eval()
test_metrics, conf_mat = evaluation(model, criterion, test_loader, device=device, mode='test', config=config)
print('Loss {:.4f}, Acc {:.2f}, IoU {:.4f}'.format(test_metrics['test_loss'], test_metrics['test_accuracy'],
test_metrics['test_IoU']))
save_results(fold + 1, test_metrics, conf_mat, config)
overall_performance(config)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Set-up parameters
parser.add_argument('--dataset_folder', default='', type=str,
help='Path to the folder where the results are saved.')
parser.add_argument('--res_dir', default='./results', help='Path to the folder where the results should be stored')
parser.add_argument('--num_workers', default=8, type=int, help='Number of data loading workers')
parser.add_argument('--rdm_seed', default=1, type=int, help='Random seed')
parser.add_argument('--device', default='cuda', type=str,
help='Name of device to use for tensor computations (cuda/cpu)')
parser.add_argument('--display_step', default=50, type=int,
help='Interval in batches between display of training metrics')
parser.add_argument('--preload', dest='preload', action='store_true',
help='If specified, the whole dataset is loaded to RAM at initialization')
parser.set_defaults(preload=False)
# Training parameters
parser.add_argument('--kfold', default=5, type=int, help='Number of folds for cross validation')
parser.add_argument('--epochs', default=100, type=int, help='Number of epochs per fold')
parser.add_argument('--batch_size', default=128, type=int, help='Batch size')
parser.add_argument('--lr', default=0.001, type=float, help='Learning rate')
parser.add_argument('--gamma', default=1, type=float, help='Gamma parameter of the focal loss')
parser.add_argument('--npixel', default=64, type=int, help='Number of pixels to sample from the input images')
# Architecture Hyperparameters
## PSE
parser.add_argument('--input_dim', default=10, type=int, help='Number of channels of input images')
parser.add_argument('--mlp1', default='[10,32,64]', type=str, help='Number of neurons in the layers of MLP1')
parser.add_argument('--pooling', default='mean_std', type=str, help='Pixel-embeddings pooling strategy')
parser.add_argument('--mlp2', default='[132,128]', type=str, help='Number of neurons in the layers of MLP2')
parser.add_argument('--geomfeat', default=1, type=int,
help='If 1 the precomputed geometrical features (f) are used in the PSE.')
## L-TAE
parser.add_argument('--n_head', default=16, type=int, help='Number of attention heads')
parser.add_argument('--d_k', default=8, type=int, help='Dimension of the key and query vectors')
parser.add_argument('--mlp3', default='[256,128]', type=str, help='Number of neurons in the layers of MLP3')
parser.add_argument('--T', default=1000, type=int, help='Maximum period for the positional encoding')
parser.add_argument('--positions', default='bespoke', type=str,
help='Positions to use for the positional encoding (bespoke / order)')
parser.add_argument('--lms', default=24, type=int,
help='Maximum sequence length for positional encoding (only necessary if positions == order)')
parser.add_argument('--dropout', default=0.2, type=float, help='Dropout probability')
parser.add_argument('--d_model', default=256, type=int,
help="size of the embeddings (E), if input vectors are of a different size, a linear layer is used to project them to a d_model-dimensional space"
)
## Classifier
parser.add_argument('--num_classes', default=20, type=int, help='Number of classes')
parser.add_argument('--mlp4', default='[128, 64, 32, 20]', type=str, help='Number of neurons in the layers of MLP4')
## Other methods (use one of the flags tae/gru/tcnn to train respectively a TAE, GRU or TempCNN instead of an L-TAE)
## see paper appendix for hyperparameters
parser.add_argument('--tae', dest='tae', action='store_true',
help="Temporal Attention Encoder for temporal encoding")
parser.add_argument('--gru', dest='gru', action='store_true', help="Gated Recureent Unit for temporal encoding")
parser.add_argument('--hidden_dim', default=156, type=int, help="Hidden state size")
parser.add_argument('--tcnn', dest='tcnn', action='store_true', help="Temporal Convolutions for temporal encoding")
parser.add_argument('--nker', default='[32,32,128]', type=str, help="Number of successive convolutional kernels ")
parser.set_defaults(gru=False, tcnn=False, tae=False)
config = parser.parse_args()
config = vars(config)
for k, v in config.items():
if 'mlp' in k or k == 'nker':
v = v.replace('[', '')
v = v.replace(']', '')
config[k] = list(map(int, v.split(',')))
pprint.pprint(config)
main(config)