-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yaml
93 lines (92 loc) · 6.19 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
apex: false # Set True to use float16.
B_w: 0.2 # The loss weight of fine-grained loss, which is named as `alpha` in the paper.
ID_class: 751 # The number of ID classes in the dataset. For example, 751 for Market, 702 for DukeMTMC
ID_stride: 1 # Stride in Appearance encoder
ID_style: AB # For time being, we only support AB. In the future, we will support PCB.
batch_size: 8 # BatchSize
beta1: 0 # Adam hyperparameter
beta2: 0.999 # Adam hyperparameter
crop_image_height: 128 # Input height
crop_image_width: 64 #
data_root: Dataset/ # Input width
#data_root_market: Dataset/Market_pytorch/
#data_root_duke: Dataset/Duke_pytorch/
data_root_market: Dataset/pytorch_m/
data_root_duke: Dataset/pytorch_d/
bone_folder_market: "Dataset/Market_train/pose_map_image/"
bone_folder_duke: "Dataset/Duke_train/pose_map_image/"
mask_folder_market: "Dataset/Market_train/pose_mask_image/"
mask_folder_duke: "Dataset/Duke_train/pose_mask_image/"
annotations_file_path: "Dataset/annotation-train.csv"
recon_kl_w: 0.01
recon_kl_cyc_w: 0.01
# Dataset Root
dis:
LAMBDA: 0.01 # the hyperparameter for the regularization term
activ: lrelu # activation function style [relu/lrelu/prelu/selu/tanh]
dim: 32 # number of filters in the bottommost layer
gan_type: lsgan # GAN loss [lsgan/nsgan]
n_layer: 2 # number of layers in D
n_res: 4 # number of layers in D
non_local: 0 # number of non_local layers
norm: none # normalization layer [none/bn/in/ln]
num_scales: 3 # number of scales
pad_type: reflect # padding type [zero/reflect]
display_size: 8 # How much display images
erasing_p: 0.5 # Random erasing probability [0-1]
gamma: 0.1 # Learning Rate Decay (except appearance encoder)
gamma2: 0.1 # Learning Rate Decay (for appearance encoder)
gan_w: 1 # the weight of gan loss
gen:
activ: lrelu # activation function style [relu/lrelu/prelu/selu/tanh]
dec: basic # [basic/parallel/series]
dim: 16 # number of filters in the bottommost layer
dropout: 0 # use dropout in the generator
id_dim: 2048 # length of appearance code
mlp_dim: 512 # number of filters in MLP
mlp_norm: none # norm in mlp [none/bn/in/ln]
n_downsample: 2 # number of downsampling layers in content encoder
n_res: 4 # number of residual blocks in content encoder/decoder
non_local: 0 # number of non_local layer
pad_type: reflect # padding type [zero/reflect]
tanh: false # use tanh or not at the last layer
init: kaiming # initialization [gaussian/kaiming/xavier/orthogonal]
id_w: 1.0 # the weight of ID loss
image_display_iter: 1 # How often do you want to display output images during training
image_save_iter: 1 # How often do you want to save output images during training
input_dim_a: 21 # We use the gray-scale input, so the input dim is 1
input_dim_b: 21 # We use the gray-scale input, so the input dim is 1
log_iter: 1 # How often do you want to log the training stats
lr2: 0.002 # initial appearance encoder learning rate
lr_d: 0.0001 # initial discriminator learning rate
lr_g: 0.0001 # initial generator (except appearance encoder) learning rate
lr_policy: multistep # learning rate scheduler [multistep|constant|step]
max_cyc_w: 2 # the maximum weight for cycle loss
max_iter: 130000 # When you end the training
max_CNN_w: 2 # the maximum weight for prime loss ( KL loss)
max_w: 1 # the maximum weight for feature reconstruction losses
new_size: 128 # the resized size
norm_id: false # Do we normalize the appearance code
num_workers: 8 # nworks to load the data
pid_w: 1.0 # positive ID loss
pool: max # pooling layer for the appearance encoder
recon_s_w: 0 # the initial weight for structure code reconstruction
recon_f_w: 0 # the initial weight for appearance code reconstruction
recon_id_w: 0.5 # the initial weight for ID reconstruction
recon_x_cyc_w: 0 # the initial weight for cycle reconstruction
recon_x_w: 5 # the initial weight for self-reconstruction
recon_xp_w: 5 # the initial weight for self-identity reconstruction
single: gray # make input to gray-scale
snapshot_save_iter: 10000 # How often to save the checkpoint
sqrt: false # whether use square loss.
step_size: 60000 # when to decay the learning rate
CNN: best # CNN model name. For DukeMTMC, you may set `best-duke`
CNN_w: 0 # the initial weight for prime loss ( KL loss)
CNN_style: 0 # select CNN style.[0-4] # 0:smooth dynamic label# 1: Pseudo label, hard dynamic label# 2: Conditional label, hard static label # 3: LSRO, static smooth label# 4: Dynamic Soft Two-label
train_bn: true # whether we train the bn for the generated image.
use_decoder_again: true # whether we train the decoder on the generatd image.
use_encoder_again: 0.5 # the probability we train the structure encoder on the generatd image.
vgg_w: 0 # We do not use vgg as one kind of inception loss.
warm_iter: 15000 # when to start warm up the losses (fine-grained/feature reconstruction losses).
warm_scale: 0.0005 # how fast to warm up
weight_decay: 0.0005 # weight decay