-
Notifications
You must be signed in to change notification settings - Fork 0
/
autoattack.py
339 lines (282 loc) · 15.3 KB
/
autoattack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import math
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from other_utils import Logger
import checks
from get_bary import get_bary
class Args:
maxiter = 200
rho = 0.5
tau1 = 0.1
tau2 = 1
mu = 0.1
theta = 0.1
class Normalize(nn.Module):
def __init__(self, mean, std):
super(Normalize, self).__init__()
self.mean = torch.as_tensor(mean).cuda()
self.std = torch.as_tensor(std).cuda()
if self.mean.ndim == 1:
self.mean = self.mean.view(-1, 1, 1)
if self.std.ndim == 1:
self.std = self.std.view(-1, 1, 1)
def forward(self, x):
x = x.clone()
return x.sub_(self.mean).div_(self.std)
class AutoAttack():
def __init__(self, model, norm='Linf', eps=.3, seed=None, verbose=True,
attacks_to_run=[], version='standard', is_tf_model=False,
device='cuda', log_path=None, n=1024, x=32):
self.model = model
self.norm = norm
assert norm in ['Linf', 'L2', 'L1']
self.epsilon = eps
self.seed = seed
self.verbose = verbose
self.attacks_to_run = attacks_to_run
self.version = version
self.is_tf_model = is_tf_model
self.device = device
self.logger = Logger(log_path)
self.args = Args()
self.n = n
self.x = x
if version in ['standard', 'plus', 'rand'] and attacks_to_run != []:
raise ValueError("attacks_to_run will be overridden unless you use version='custom'")
if not self.is_tf_model:
from autopgd_base import APGDAttack
self.apgd = APGDAttack(self.model, n_restarts=5, n_iter=100, verbose=False,
eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed,
device=self.device, logger=self.logger)
from fab_pt import FABAttack_PT
self.fab = FABAttack_PT(self.model, n_restarts=5, n_iter=100, eps=self.epsilon, seed=self.seed,
norm=self.norm, verbose=False, device=self.device)
from square import SquareAttack
self.square = SquareAttack(self.model, p_init=.8, n_queries=5000, eps=self.epsilon, norm=self.norm,
n_restarts=1, seed=self.seed, verbose=False, device=self.device, resc_schedule=False)
from autopgd_base import APGDAttack_targeted
self.apgd_targeted = APGDAttack_targeted(self.model, n_restarts=1, n_iter=100, verbose=False,
eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
logger=self.logger)
else:
from autopgd_base import APGDAttack
self.apgd = APGDAttack(self.model, n_restarts=5, n_iter=100, verbose=False,
eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
is_tf_model=True, logger=self.logger)
from fab_tf import FABAttack_TF
self.fab = FABAttack_TF(self.model, n_restarts=5, n_iter=100, eps=self.epsilon, seed=self.seed,
norm=self.norm, verbose=False, device=self.device)
from square import SquareAttack
self.square = SquareAttack(self.model.predict, p_init=.8, n_queries=5000, eps=self.epsilon, norm=self.norm,
n_restarts=1, seed=self.seed, verbose=False, device=self.device, resc_schedule=False)
from autopgd_base import APGDAttack_targeted
self.apgd_targeted = APGDAttack_targeted(self.model, n_restarts=1, n_iter=100, verbose=False,
eps=self.epsilon, norm=self.norm, eot_iter=1, rho=.75, seed=self.seed, device=self.device,
is_tf_model=True, logger=self.logger)
if version in ['standard', 'plus', 'rand']:
self.set_version(version)
def get_logits(self, x):
if not self.is_tf_model:
return self.model(x)
else:
return self.model.predict(x)
def get_seed(self):
return time.time() if self.seed is None else self.seed
def run_standard_evaluation(self, x_orig, y_orig, bs=250, return_labels=False):
if self.verbose:
print('using {} version including {}'.format(self.version,
', '.join(self.attacks_to_run)))
# checks on type of defense
if self.version != 'rand':
checks.check_randomized(self.get_logits, x_orig[:bs].to(self.device),
y_orig[:bs].to(self.device), bs=bs, logger=self.logger)
n_cls = checks.check_range_output(self.get_logits, x_orig[:bs].to(self.device),
logger=self.logger)
checks.check_dynamic(self.model, x_orig[:bs].to(self.device), self.is_tf_model,
logger=self.logger)
checks.check_n_classes(n_cls, self.attacks_to_run, self.apgd_targeted.n_target_classes,
self.fab.n_target_classes, logger=self.logger)
self.model.eval()
with torch.no_grad():
# calculate accuracy
n_batches = int(np.ceil(x_orig.shape[0] / bs))
robust_flags = torch.zeros(x_orig.shape[0], dtype=torch.bool, device=x_orig.device)
y_adv = torch.empty_like(y_orig)
for batch_idx in range(n_batches):
start_idx = batch_idx * bs
end_idx = min( (batch_idx + 1) * bs, x_orig.shape[0])
x = x_orig[start_idx:end_idx, :].clone().to(self.device)
y = y_orig[start_idx:end_idx].clone().to(self.device)
x = get_bary(x ,x ,self.args, x.size(0),True,self.n, self.x)
output = self.model(x).max(dim=1)[1]
y_adv[start_idx: end_idx] = output
correct_batch = y.eq(output)
robust_flags[start_idx:end_idx] = correct_batch.detach().to(robust_flags.device)
robust_accuracy = torch.sum(robust_flags).item() / x_orig.shape[0]
robust_accuracy_dict = {'clean': robust_accuracy}
if self.verbose:
self.logger.log('initial accuracy: {:.2%}'.format(robust_accuracy))
x_adv = x_orig.clone().detach()
startt = time.time()
for attack in self.attacks_to_run:
# item() is super important as pytorch int division uses floor rounding
num_robust = torch.sum(robust_flags).item()
if num_robust == 0:
break
n_batches = int(np.ceil(num_robust / bs))
robust_lin_idcs = torch.nonzero(robust_flags, as_tuple=False)
if num_robust > 1:
robust_lin_idcs.squeeze_()
for batch_idx in range(n_batches):
start_idx = batch_idx * bs
end_idx = min((batch_idx + 1) * bs, num_robust)
batch_datapoint_idcs = robust_lin_idcs[start_idx:end_idx]
if len(batch_datapoint_idcs.shape) > 1:
batch_datapoint_idcs.squeeze_(-1)
x = x_orig[batch_datapoint_idcs, :].clone().to(self.device)
y = y_orig[batch_datapoint_idcs].clone().to(self.device)
# make sure that x is a 4d tensor even if there is only a single datapoint left
if len(x.shape) == 3:
x.unsqueeze_(dim=0)
# run attack
if attack == 'apgd-ce':
# apgd on cross-entropy loss
self.apgd.loss = 'ce'
self.apgd.seed = self.get_seed()
adv_curr = self.apgd.perturb(x, y) #cheap=True
adv_curr = get_bary(adv_curr ,adv_curr , self.args, adv_curr.size(0),True, self.n, self.x)
elif attack == 'apgd-dlr':
# apgd on dlr loss
self.apgd.loss = 'dlr'
self.apgd.seed = self.get_seed()
adv_curr = self.apgd.perturb(x, y) #cheap=True
adv_curr = get_bary(adv_curr ,adv_curr ,self.args, adv_curr.size(0),True, self.n, self.x)
elif attack == 'fab':
# fab
self.fab.targeted = False
self.fab.seed = self.get_seed()
adv_curr = self.fab.perturb(x, y)
adv_curr = get_bary(adv_curr ,adv_curr ,self.args, adv_curr.size(0),True, self.n, self.x)
elif attack == 'square':
# square
self.square.seed = self.get_seed()
adv_curr = self.square.perturb(x, y)
adv_curr = get_bary(adv_curr ,adv_curr ,self.args, adv_curr.size(0),True, self.n, self.x)
elif attack == 'apgd-t':
# targeted apgd
self.apgd_targeted.seed = self.get_seed()
adv_curr = self.apgd_targeted.perturb(x, y) #cheap=True
adv_curr = get_bary(adv_curr ,adv_curr ,self.args, adv_curr.size(0),True, self.n, self.x)
elif attack == 'fab-t':
# fab targeted
self.fab.targeted = True
self.fab.n_restarts = 1
self.fab.seed = self.get_seed()
adv_curr = self.fab.perturb(x, y)
adv_curr = get_bary(adv_curr ,adv_curr ,self.args, adv_curr.size(0),True, self.n, self.x)
else:
raise ValueError('Attack not supported')
output = self.get_logits(adv_curr).max(dim=1)[1]
false_batch = ~y.eq(output).to(robust_flags.device)
non_robust_lin_idcs = batch_datapoint_idcs[false_batch]
robust_flags[non_robust_lin_idcs] = False
x_adv[non_robust_lin_idcs] = adv_curr[false_batch].detach().to(x_adv.device)
y_adv[non_robust_lin_idcs] = output[false_batch].detach().to(x_adv.device)
if self.verbose:
num_non_robust_batch = torch.sum(false_batch)
self.logger.log('{} - {}/{} - {} out of {} successfully perturbed'.format(
attack, batch_idx + 1, n_batches, num_non_robust_batch, x.shape[0]))
robust_accuracy = torch.sum(robust_flags).item() / x_orig.shape[0]
robust_accuracy_dict[attack] = robust_accuracy
if self.verbose:
self.logger.log('robust accuracy after {}: {:.2%} (total time {:.1f} s)'.format(
attack.upper(), robust_accuracy, time.time() - startt))
# check about square
checks.check_square_sr(robust_accuracy_dict, logger=self.logger)
# final check
if self.verbose:
if self.norm == 'Linf':
res = (x_adv - x_orig).abs().reshape(x_orig.shape[0], -1).max(1)[0]
elif self.norm == 'L2':
res = ((x_adv - x_orig) ** 2).reshape(x_orig.shape[0], -1).sum(-1).sqrt()
elif self.norm == 'L1':
res = (x_adv - x_orig).abs().reshape(x_orig.shape[0], -1).sum(dim=-1)
self.logger.log('max {} perturbation: {:.5f}, nan in tensor: {}, max: {:.5f}, min: {:.5f}'.format(
self.norm, res.max(), (x_adv != x_adv).sum(), x_adv.max(), x_adv.min()))
self.logger.log('robust accuracy: {:.2%}'.format(robust_accuracy))
if return_labels:
return x_adv, y_adv
else:
return x_adv
def clean_accuracy(self, x_orig, y_orig, bs=250):
n_batches = math.ceil(x_orig.shape[0] / bs)
acc = 0.
self.model.eval()
with torch.no_grad():
for counter in range(n_batches):
x = x_orig[counter * bs:min((counter + 1) * bs, x_orig.shape[0])].clone().to(self.device)
y = y_orig[counter * bs:min((counter + 1) * bs, x_orig.shape[0])].clone().to(self.device)
x = get_bary(x ,x ,self.args, x.size(0),True, self.n, self.x)
output = self.get_logits(x)
acc += (output.max(1)[1] == y).float().sum()
if self.verbose:
print('clean accuracy: {:.2%}'.format(acc / x_orig.shape[0]))
return acc.item() / x_orig.shape[0]
def run_standard_evaluation_individual(self, x_orig, y_orig, bs=250, return_labels=False):
if self.verbose:
print('using {} version including {}'.format(self.version,
', '.join(self.attacks_to_run)))
l_attacks = self.attacks_to_run
adv = {}
verbose_indiv = self.verbose
self.verbose = False
for c in l_attacks:
startt = time.time()
self.attacks_to_run = [c]
x_adv, y_adv = self.run_standard_evaluation(x_orig, y_orig, bs=bs, return_labels=True)
if return_labels:
adv[c] = (x_adv, y_adv)
else:
adv[c] = x_adv
if verbose_indiv:
acc_indiv = self.clean_accuracy(x_adv, y_orig, bs=bs)
space = '\t \t' if c == 'fab' else '\t'
self.logger.log('robust accuracy by {} {} {:.2%} \t (time attack: {:.1f} s)'.format(
c.upper(), space, acc_indiv, time.time() - startt))
return adv
def set_version(self, version='standard'):
if self.verbose:
print('setting parameters for {} version'.format(version))
if version == 'standard':
self.attacks_to_run = ['apgd-ce', 'apgd-t', 'fab-t', 'square']
if self.norm in ['Linf', 'L2']:
self.apgd.n_restarts = 1
self.apgd_targeted.n_target_classes = 9
elif self.norm in ['L1']:
self.apgd.use_largereps = True
self.apgd_targeted.use_largereps = True
self.apgd.n_restarts = 5
self.apgd_targeted.n_target_classes = 5
self.fab.n_restarts = 1
self.apgd_targeted.n_restarts = 1
self.fab.n_target_classes = 9
#self.apgd_targeted.n_target_classes = 9
self.square.n_queries = 5000
elif version == 'plus':
self.attacks_to_run = ['apgd-ce', 'apgd-dlr', 'fab', 'square', 'apgd-t', 'fab-t']
self.apgd.n_restarts = 5
self.fab.n_restarts = 5
self.apgd_targeted.n_restarts = 1
self.fab.n_target_classes = 9
self.apgd_targeted.n_target_classes = 9
self.square.n_queries = 5000
if not self.norm in ['Linf', 'L2']:
print('"{}" version is used with {} norm: please check'.format(
version, self.norm))
elif version == 'rand':
self.attacks_to_run = ['apgd-ce', 'apgd-dlr']
self.apgd.n_restarts = 1
self.apgd.eot_iter = 20