-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrun.py
324 lines (252 loc) · 14.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import argparse
from datasets import *
from models import *
import yaml
from tools.tools import *
from pathlib import Path
import tools.evaluation as evaluation
import shutil
import logging
avg_iou_per_epoch = [0]
avg_class_acc_per_epoch = [0]
avg_loss_per_epoch = [0]
def main(config: dict, log_dir: str, isTrain: bool):
with tf.Graph().as_default():
Dataset = import_class('datasets', config['dataset']['name'])
dataset = Dataset(config['dataset']['data_path'],
is_train=isTrain,
test_sets=config['dataset']['test_sets'],
downsample_prefix=config['dataset']['downsample_prefix'],
is_colors=config['dataset']['colors'],
is_laser=config['dataset']['laser'],
n_classes=config['dataset']['num_classes'])
BatchGenerator = import_class('batch_generators', config['batch_generator']['name'])
batch_generator = BatchGenerator(dataset, config['batch_generator']['params'])
Model = import_class('models', config['model']['name'])
model = Model(batch_generator, config['model'].get('params'))
if isTrain:
Optimizer = import_class('optimizers', config['optimizer']['name'])
optimizer = Optimizer(model, config['optimizer']['params'])
sess, ops, writer, saver, epoch_start = prepare_network(model, log_dir, optimizer, isTrain=isTrain,
model_path=config.get('resume_path'))
for epoch in range(epoch_start, config['train']['epochs']):
train_one_epoch(sess, ops, writer, model, epoch, config['train']['epochs'])
eval_one_epoch(sess, ops, model, dataset, epoch, config['train']['epochs'])
# Save the variables to disk.
if epoch % 10 == 0:
path = Path(f"{log_dir}/model_ckpts")
path.mkdir(parents=True, exist_ok=True)
saver.save(sess, os.path.join(f"{log_dir}/model_ckpts",
f"{epoch+1:03d}_model.ckpt"))
else:
sess, ops, writer, saver, _ = prepare_network(model, log_dir,
isTrain=isTrain, model_path=config['model_path'])
predict_on_test_set(sess, ops, model, dataset, log_dir)
def prepare_network(model: MultiBlockModel, log_dir: str, optimizer=None, isTrain=True, model_path=None):
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
with tf.device('/gpu:0'):
model.register_summary()
if optimizer is not None:
optimizer.register_summary()
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(log_dir, 'tensorflow'), sess.graph)
if optimizer is not None:
ops = {'pointclouds_pl': model.batch_generator.pointclouds_pl,
'labels_pl': model.batch_generator.labels_pl,
'mask_pl': model.batch_generator.mask_pl,
'eval_per_epoch_pl': model.eval_per_epoch_pl,
'is_training_pl': model.is_training_pl,
'pred': model.prediction,
'pred_sm': model.prediction_sm,
'loss': model.loss,
'train_op': optimizer.optimize,
'merged': merged,
'step': optimizer.global_step,
'correct': model.correct,
'labels': model.labels,
'handle_pl': model.batch_generator.handle_pl,
'iterator_train': model.batch_generator.iterator_train,
'iterator_test': model.batch_generator.iterator_test,
'cloud_ids_pl': model.batch_generator.cloud_ids_pl,
'point_ids_pl': model.batch_generator.point_ids_pl,
'next_element': model.batch_generator.next_element
}
else:
ops = {'pointclouds_pl': model.batch_generator.pointclouds_pl,
'labels_pl': model.batch_generator.labels_pl,
'mask_pl': model.batch_generator.mask_pl,
'eval_per_epoch_pl': model.eval_per_epoch_pl,
'is_training_pl': model.is_training_pl,
'pred': model.prediction,
'pred_sm': model.prediction_sm,
'loss': model.loss,
'correct': model.correct,
'labels': model.labels,
'handle_pl': model.batch_generator.handle_pl,
'iterator_train': model.batch_generator.iterator_train,
'iterator_test': model.batch_generator.iterator_test,
'cloud_ids_pl': model.batch_generator.cloud_ids_pl,
'point_ids_pl': model.batch_generator.point_ids_pl,
'next_element': model.batch_generator.next_element
}
# Init variables
init = tf.global_variables_initializer()
sess.run(init, {model.is_training_pl: isTrain})
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
epoch_number = 0
if model_path is not None:
# resume training
latest_checkpoint_path = tf.train.latest_checkpoint(model_path)
# extract latest training epoch number
epoch_number = int(latest_checkpoint_path.split('/')[-1].split('_')[0])
saver.restore(sess, latest_checkpoint_path)
return sess, ops, train_writer, saver, epoch_number
def train_one_epoch(sess, ops, train_writer, model, epoch, max_epoch):
model.batch_generator.shuffle()
for _ in tqdm(range(model.batch_generator.num_train_batches),
desc=f"Running training epoch {epoch+1:03d} / {max_epoch:03d}"):
a = np.reshape(np.array(avg_class_acc_per_epoch[-1]), [1, 1])
b = np.reshape(np.array(avg_iou_per_epoch[-1]), [1, 1])
c = np.reshape(np.array(avg_loss_per_epoch[-1]), [1, 1])
eval_per_epoch = np.concatenate((a, b, c))
handle_train = sess.run(ops['iterator_train'].string_handle())
feed_dict = {ops['is_training_pl']: True,
ops['eval_per_epoch_pl']: eval_per_epoch,
ops['handle_pl']: handle_train}
start_time = time.time()
summary, step, _, loss_val, pc_val, pred_val, labels_val, correct_val = sess.run(
[ops['merged'], ops['step'], ops['train_op'], ops['loss'],
ops['pointclouds_pl'],
ops['pred'], ops['labels'], ops['correct']],
feed_dict=feed_dict)
elapsed_time = time.time() - start_time
summary2 = tf.Summary()
summary2.value.add(tag='secs_per_iter', simple_value=elapsed_time)
train_writer.add_summary(summary2, step)
train_writer.add_summary(summary, step)
def eval_one_epoch(sess, ops, model, dataset, epoch, max_epoch):
total_correct = 0
total_seen = 0
loss_sum = 0
# Compute avg IoU over classes
total_seen_class = [0 for _ in range(dataset.num_classes)] # true_pos + false_neg i.e. all points from this class
total_correct_class = [0 for _ in range(dataset.num_classes)] # true_pos
total_pred_class = [0 for _ in range(dataset.num_classes)] # true_pos + false_pos i.e. num pred classes
overall_acc = []
for _ in tqdm(range(model.batch_generator.num_test_batches),
desc='Running evaluation epoch %04d / %04d' % (epoch+1, max_epoch)):
a = np.reshape(np.array(avg_class_acc_per_epoch[-1]), [1, 1])
b = np.reshape(np.array(avg_iou_per_epoch[-1]), [1, 1])
c = np.reshape(np.array(avg_loss_per_epoch[-1]), [1, 1])
eval_per_epoch = np.concatenate((a, b, c))
handle_test = sess.run(ops['iterator_test'].string_handle())
feed_dict = {ops['is_training_pl']: False,
ops['eval_per_epoch_pl']: eval_per_epoch,
ops['handle_pl']: handle_test}
_, step, loss_val, pred_val, correct_val, labels_val, batch_mask, batch_cloud_ids, batch_point_ids = sess.run(
[ops['merged'], ops['step'], ops['loss'],
ops['pred_sm'], ops['correct'], ops['labels'],
ops['mask_pl'], ops['cloud_ids_pl'], ops['point_ids_pl']], feed_dict=feed_dict)
total_correct += np.sum(correct_val) # shape: scalar
total_seen += pred_val.shape[0] * pred_val.shape[1]
overall_acc.append(total_correct / total_seen)
loss_sum += loss_val
pred_val = np.argmax(pred_val, 2) # shape: (BS*B' x N)
for i in range(labels_val.shape[0]): # iterate over blocks
for j in range(labels_val.shape[1]): # iterate over points in block
lbl_gt = int(labels_val[i, j])
lbl_pred = int(pred_val[i, j])
total_seen_class[lbl_gt] += 1
total_correct_class[lbl_gt] += (lbl_pred == lbl_gt)
total_pred_class[lbl_pred] += 1
iou_per_class = np.zeros(dataset.num_classes)
iou_per_class_mask = np.zeros(dataset.num_classes, dtype=np.int8)
for i in range(dataset.num_classes):
denominator = float(total_seen_class[i] + total_pred_class[i] - total_correct_class[i])
if denominator != 0:
iou_per_class[i] = total_correct_class[i] / denominator
else:
iou_per_class_mask[i] = 1
iou_per_class_masked = np.ma.array(iou_per_class, mask=iou_per_class_mask)
total_seen_class_mask = [1 if seen == 0 else 0 for seen in total_seen_class]
class_acc = np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float)
class_acc_masked = np.ma.array(class_acc, mask=total_seen_class_mask)
avg_iou = iou_per_class_masked.mean()
avg_loss = loss_sum / float(total_seen / model.batch_generator.num_points)
avg_class_acc = class_acc_masked.mean()
avg_class_acc_per_epoch.append(avg_class_acc)
avg_iou_per_epoch.append(avg_iou)
avg_loss_per_epoch.append(avg_loss)
logging.info(f"[Epoch {epoch+1:03d}] avg class acc: {avg_class_acc}")
logging.info(f"[Epoch {epoch+1:03d}] avg iou: {avg_iou}")
logging.info(f"[Epoch {epoch+1:03d}] avg overall acc: {np.mean(overall_acc)}")
def predict_on_test_set(sess, ops, model, dataset: GeneralDataset, log_dir: str):
is_training = False
cumulated_result = {}
for _ in tqdm(range(model.batch_generator.num_test_batches)):
handle_test = sess.run(ops['iterator_test'].string_handle())
feed_dict = {ops['is_training_pl']: is_training,
ops['eval_per_epoch_pl']: np.zeros((3,1)),
ops['handle_pl']: handle_test}
loss_val, pred_val, correct_val, labels_val, batch_mask, batch_cloud_ids, batch_point_ids = sess.run(
[ops['loss'], ops['pred_sm'], ops['correct'], ops['labels'],
ops['mask_pl'], ops['cloud_ids_pl'], ops['point_ids_pl']], feed_dict=feed_dict)
num_classes = pred_val.shape[2]
num_batches = pred_val.shape[0]
batch_mask = np.array(batch_mask, dtype=bool) # shape: (BS, B) - convert mask to bool
batch_point_ids = batch_point_ids[batch_mask] # shape: (B, N)
batch_cloud_ids = batch_cloud_ids[batch_mask] # shape: (B)
for batch_id in range(num_batches):
pc_id = batch_cloud_ids[batch_id]
pc_name = dataset.file_names[pc_id]
for point_in_batch, point_id in enumerate(batch_point_ids[batch_id, :]):
num_fs_properties = dataset.data[pc_id].shape[1]
if pc_name not in cumulated_result:
# if there is not information about the point cloud so far, initialize it
# label -1 means that there is not label given so far
# cumulate predictions for the same point
cumulated_result[pc_name] = np.zeros((dataset.data[pc_id].shape[0],
num_fs_properties + num_classes + 1))
cumulated_result[pc_name][:, :num_fs_properties] = dataset.data[pc_id]
cumulated_result[pc_name][:, -1] = -1
cumulated_result[pc_name][point_id, num_fs_properties:-1] += pred_val[batch_id, point_in_batch]
cumulated_result[pc_name][point_id, -1] = np.argmax(cumulated_result[pc_name][point_id,
num_fs_properties:-1])
for key in tqdm(cumulated_result.keys(), desc='knn interpolation for full sized point cloud'):
cumulated_result[key] = evaluation.knn_interpolation(cumulated_result[key], dataset.full_sized_data[key])
class_acc, class_iou, overall_acc = evaluation.calculate_scores(cumulated_result, dataset.num_classes)
logging.info(f" overall accuracy: {overall_acc}")
logging.info(f"mean class accuracy: {np.nanmean(class_acc)}")
logging.info(f" mean iou: {np.nanmean(class_iou)}")
for i in range(dataset.num_classes):
logging.info(f"accuracy for class {i}: {class_acc[i]}")
logging.info(f" iou for class {i}: {class_iou[i]}")
evaluation.save_npy_results(cumulated_result, log_dir)
evaluation.save_pc_as_obj(cumulated_result, dataset.label_colors(), log_dir)
if __name__ == '__main__':
log_dir = setup_logger()
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="experiment definition file", metavar="FILE", required=True)
args = parser.parse_args()
params = parser.parse_args()
with open(params.config, 'r') as stream:
try:
config = yaml.load(stream)
# backup config file
shutil.copy(params.config, log_dir)
isTrain = False
if config['modus'] == 'TRAIN_VAL':
isTrain = True
elif config['modus'] == 'TEST':
isTrain = False
main(config, log_dir, isTrain)
except yaml.YAMLError as exc:
logging.error('Configuration file could not be read')
exit(1)