-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp_run_detector.py
120 lines (96 loc) · 3.37 KB
/
app_run_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from mayavi import mlab
import numpy as np
from PIL import Image
import lidar_det.utils.utils_box3d as ub3d
from lidar_det.detector import PersonMinkUNet
# # https://docs.enthought.com/mayavi/mayavi/tips.html#rendering-using-the-virtual-framebuffer
# from pyvirtualdisplay.display import Display
# display = Display(visible=True, size=(1280, 1024))
# display.start()
mlab.options.offscreen = True
ckpt = "/globalwork/jia/archive/JRDB_cvpr21_workshop/" \
"logs/unet_bl_voxel_jrdb_0.05_0.1_20210519_232859/ckpt/ckpt_e40.pth"
detector = PersonMinkUNet(ckpt)
def draw_pointcloud_and_detections(
pc: np.ndarray, boxes: np.ndarray, scores: np.ndarray
):
fig = mlab.figure(
bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), engine=None, size=(800, 500),
)
# points
s = np.hypot(pc[0], pc[1])
# print(pc.mean(axis=1))
mpt = mlab.points3d(
pc[0],
pc[1],
pc[2],
s,
colormap="blue-red",
mode="sphere",
scale_factor=0.06,
figure=fig,
)
mpt.glyph.scale_mode = "scale_by_vector"
# boxes
s_argsort = scores.argsort()
scores = scores[s_argsort]
# plot low confidence boxes first (on bottom layer)
boxes = boxes[s_argsort]
boxes_color = [(0.0, 1.0, 0.0)] * len(boxes)
# limit the number of boxes so it does not take forever to plot
if len(boxes) > 50:
boxes = boxes[-50:]
boxes_color = boxes_color[-50:]
corners, connect_inds = ub3d.boxes_to_corners(boxes, connect_inds=True)
for corner, color in zip(corners, boxes_color):
for inds in connect_inds:
mlab.plot3d(
corner[0, inds],
corner[1, inds],
corner[2, inds],
color=color,
tube_radius=None,
line_width=1.0,
figure=fig,
)
# print(mlab.view())
mlab.view(
# azimuth=180,
# elevation=180,
# focalpoint=[12.0909996, -1.04700089, -2.03249991],
# distance="auto",
focalpoint=pc.mean(axis=1),
distance=20,
figure=fig,
)
# mlab.show() # for finding a good view interactively
# convert to image
fig.scene._lift()
img = mlab.screenshot(figure=fig)
mlab.close(fig)
return Image.fromarray(img)
def run_detector_plot_result(pc: np.ndarray, score_threshold: float) -> Image.Image:
boxes, scores = detector(pc) # (B 7), (B)
mask = scores >= score_threshold
img = draw_pointcloud_and_detections(pc, boxes[mask], scores[mask])
return img
if __name__ == "__main__":
import yaml
from lidar_det.dataset import JRDBDet3D
# import matplotlib.pyplot as plt
cfg_file = "/globalwork/jia/archive/JRDB_cvpr21_workshop/logs/" \
"unet_bl_voxel_jrdb_0.05_0.1_20210519_232859/backup/" \
"unet_bl_voxel_jrdb_0.05_0.1.yaml"
with open(cfg_file, "r") as f:
cfg = yaml.safe_load(f)
cfg["dataset"]["target_mode"] = cfg["model"]["target_mode"]
cfg["dataset"]["num_anchors"] = cfg["model"]["kwargs"]["num_anchors"]
cfg["dataset"]["num_ori_bins"] = cfg["model"]["kwargs"]["num_ori_bins"]
pc_path = "/globalwork/datasets/JRDB_may17"
dataset = JRDBDet3D(pc_path, "test", cfg["dataset"])
# pc = dataset[0]["points"]
# img = run_detector_plot_result(pc, 0.5)
# # plot plt
# fig = plt.figure(figsize=(7, 5))
# plt.imshow(img)
# plt.show()