-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathbasemodel.py
executable file
·216 lines (178 loc) · 8.14 KB
/
basemodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# -*- coding: utf-8 -*-
# File: basemodel.py
import numpy as np
from contextlib import ExitStack, contextmanager
import tensorflow as tf
from tensorpack.models import BatchNorm, Conv2D, MaxPooling, layer_register
from tensorpack.tfutils import argscope
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope
from tensorpack.tfutils.varreplace import custom_getter_scope, freeze_variables
from config import config as cfg
@layer_register(log_shape=True)
def GroupNorm(x, group=32, gamma_initializer=tf.constant_initializer(1.)):
shape = x.get_shape().as_list()
ndims = len(shape)
assert ndims == 4, shape
chan = shape[1]
assert chan % group == 0, chan
group_size = chan // group
orig_shape = tf.shape(x)
h, w = orig_shape[2], orig_shape[3]
x = tf.reshape(x, tf.stack([-1, group, group_size, h, w]))
mean, var = tf.nn.moments(x, [2, 3, 4], keep_dims=True)
new_shape = [1, group, group_size, 1, 1]
beta = tf.get_variable('beta', [chan], initializer=tf.constant_initializer())
beta = tf.reshape(beta, new_shape)
gamma = tf.get_variable('gamma', [chan], initializer=gamma_initializer)
gamma = tf.reshape(gamma, new_shape)
out = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-5, name='output')
return tf.reshape(out, orig_shape, name='output')
def freeze_affine_getter(getter, *args, **kwargs):
# custom getter to freeze affine params inside bn
name = args[0] if len(args) else kwargs.get('name')
if name.endswith('/gamma') or name.endswith('/beta'):
kwargs['trainable'] = False
ret = getter(*args, **kwargs)
tf.add_to_collection(tf.GraphKeys.MODEL_VARIABLES, ret)
else:
ret = getter(*args, **kwargs)
return ret
def maybe_reverse_pad(topleft, bottomright):
if cfg.BACKBONE.TF_PAD_MODE:
return [topleft, bottomright]
return [bottomright, topleft]
@contextmanager
def backbone_scope(freeze):
"""
Args:
freeze (bool): whether to freeze all the variables under the scope
"""
def nonlin(x):
x = get_norm()(x)
return tf.nn.relu(x)
with argscope([Conv2D, MaxPooling, BatchNorm], data_format='channels_first'), \
argscope(Conv2D, use_bias=False, activation=nonlin,
kernel_initializer=tf.variance_scaling_initializer(
scale=2.0, mode='fan_out')), \
ExitStack() as stack:
if cfg.BACKBONE.NORM in ['FreezeBN', 'SyncBN']:
if freeze or cfg.BACKBONE.NORM == 'FreezeBN':
stack.enter_context(argscope(BatchNorm, training=False))
else:
stack.enter_context(argscope(
BatchNorm, sync_statistics='nccl' if cfg.TRAINER == 'replicated' else 'horovod'))
if freeze:
stack.enter_context(freeze_variables(stop_gradient=False, skip_collection=True))
else:
# the layers are not completely freezed, but we may want to only freeze the affine
if cfg.BACKBONE.FREEZE_AFFINE:
stack.enter_context(custom_getter_scope(freeze_affine_getter))
yield
def image_preprocess(image, bgr=True):
with tf.name_scope('image_preprocess'):
if image.dtype.base_dtype != tf.float32:
image = tf.cast(image, tf.float32)
mean = cfg.PREPROC.PIXEL_MEAN
std = np.asarray(cfg.PREPROC.PIXEL_STD)
if bgr:
mean = mean[::-1]
std = std[::-1]
image_mean = tf.constant(mean, dtype=tf.float32)
image_invstd = tf.constant(1.0 / std, dtype=tf.float32)
image = (image - image_mean) * image_invstd
return image
def get_norm(zero_init=False):
if cfg.BACKBONE.NORM == 'None':
return lambda x: x
if cfg.BACKBONE.NORM == 'GN':
Norm = GroupNorm
layer_name = 'gn'
else:
Norm = BatchNorm
layer_name = 'bn'
return lambda x: Norm(layer_name, x, gamma_initializer=tf.zeros_initializer() if zero_init else None)
def resnet_shortcut(l, n_out, stride, activation=tf.identity):
n_in = l.shape[1]
if n_in != n_out: # change dimension when channel is not the same
# TF's SAME mode output ceil(x/stride), which is NOT what we want when x is odd and stride is 2
# In FPN mode, the images are pre-padded already.
if not cfg.MODE_FPN and stride == 2:
l = l[:, :, :-1, :-1]
return Conv2D('convshortcut', l, n_out, 1,
strides=stride, activation=activation)
else:
return l
def resnet_bottleneck(l, ch_out, stride):
shortcut = l
if cfg.BACKBONE.STRIDE_1X1:
if stride == 2:
l = l[:, :, :-1, :-1]
l = Conv2D('conv1', l, ch_out, 1, strides=stride)
l = Conv2D('conv2', l, ch_out, 3, strides=1)
else:
l = Conv2D('conv1', l, ch_out, 1, strides=1)
if stride == 2:
l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)])
l = Conv2D('conv2', l, ch_out, 3, strides=2, padding='VALID')
else:
l = Conv2D('conv2', l, ch_out, 3, strides=stride)
if cfg.BACKBONE.NORM != 'None':
l = Conv2D('conv3', l, ch_out * 4, 1, activation=get_norm(zero_init=True))
else:
l = Conv2D('conv3', l, ch_out * 4, 1, activation=tf.identity,
kernel_initializer=tf.constant_initializer())
ret = l + resnet_shortcut(shortcut, ch_out * 4, stride, activation=get_norm(zero_init=False))
return tf.nn.relu(ret, name='output')
def resnet_group(name, l, block_func, features, count, stride):
with tf.variable_scope(name):
for i in range(0, count):
with tf.variable_scope('block{}'.format(i)):
l = block_func(l, features, stride if i == 0 else 1)
return l
def resnet_c4_backbone(image, num_blocks):
assert len(num_blocks) == 3
freeze_at = cfg.BACKBONE.FREEZE_AT
with backbone_scope(freeze=freeze_at > 0):
l = tf.pad(image, [[0, 0], [0, 0], maybe_reverse_pad(2, 3), maybe_reverse_pad(2, 3)])
l = Conv2D('conv0', l, 64, 7, strides=2, padding='VALID')
l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)])
l = MaxPooling('pool0', l, 3, strides=2, padding='VALID')
with backbone_scope(freeze=freeze_at > 1):
c2 = resnet_group('group0', l, resnet_bottleneck, 64, num_blocks[0], 1)
with backbone_scope(freeze=False):
c3 = resnet_group('group1', c2, resnet_bottleneck, 128, num_blocks[1], 2)
c4 = resnet_group('group2', c3, resnet_bottleneck, 256, num_blocks[2], 2)
# 16x downsampling up to now
return c4
@auto_reuse_variable_scope
def resnet_conv5(image, num_block):
with backbone_scope(freeze=False):
l = resnet_group('group3', image, resnet_bottleneck, 512, num_block, 2)
return l
def resnet_fpn_backbone(image, num_blocks):
freeze_at = cfg.BACKBONE.FREEZE_AT
shape2d = tf.shape(image)[2:]
mult = float(cfg.FPN.RESOLUTION_REQUIREMENT)
new_shape2d = tf.cast(tf.ceil(tf.cast(shape2d, tf.float32) / mult) * mult, tf.int32)
pad_shape2d = new_shape2d - shape2d
assert len(num_blocks) == 4, num_blocks
with backbone_scope(freeze=freeze_at > 0):
chan = image.shape[1]
pad_base = maybe_reverse_pad(2, 3)
l = tf.pad(image, tf.stack(
[[0, 0], [0, 0],
[pad_base[0], pad_base[1] + pad_shape2d[0]],
[pad_base[0], pad_base[1] + pad_shape2d[1]]]))
l.set_shape([None, chan, None, None])
l = Conv2D('conv0', l, 64, 7, strides=2, padding='VALID')
l = tf.pad(l, [[0, 0], [0, 0], maybe_reverse_pad(0, 1), maybe_reverse_pad(0, 1)])
l = MaxPooling('pool0', l, 3, strides=2, padding='VALID')
with backbone_scope(freeze=freeze_at > 1):
c2 = resnet_group('group0', l, resnet_bottleneck, 64, num_blocks[0], 1)
with backbone_scope(freeze=freeze_at > 2):
c3 = resnet_group('group1', c2, resnet_bottleneck, 128, num_blocks[1], 2)
c4 = resnet_group('group2', c3, resnet_bottleneck, 256, num_blocks[2], 2)
c5 = resnet_group('group3', c4, resnet_bottleneck, 512, num_blocks[3], 2)
# 32x downsampling up to now
# size of c5: ceil(input/32)
return c2, c3, c4, c5