forked from CodingHanYa/workspace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.h
416 lines (326 loc) · 9.55 KB
/
util.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#pragma once
#include <thread>
#include <vector>
#include <string>
#include <mutex>
#include <future>
#include <atomic>
#include <memory>
#include <iostream>
namespace hipe {
/**
* util for hipe
*/
namespace util
{
inline void sleep_for_seconds(uint sec) {
std::this_thread::sleep_for(std::chrono::seconds(sec));
}
inline void sleep_for_milli(uint milli) {
std::this_thread::sleep_for(std::chrono::milliseconds(milli));
}
inline void sleep_for_micro(uint micro) {
std::this_thread::sleep_for(std::chrono::microseconds(micro));
}
inline void sleep_for_nano(uint nano) {
std::this_thread::sleep_for(std::chrono::nanoseconds(nano));
}
template <typename T>
void print(T&& t) {
std::cout<<std::forward<T>(t)<<std::endl;
}
template <typename T, typename... _Args>
void print(T&& t, _Args&&... argv) {
std::cout<<std::forward<T>(t);
print(std::forward<_Args>(argv)...);
}
template <typename F>
void repeat(F&& foo, int times = 1) {
for (int i = 0; i < times; ++i) { foo(); }
}
/**
* just like this:
* =============
* * title *
* =============
*/
inline std::string title(std::string tar, size_t left_right_edge = 4)
{
static std::string ele1 = "=";
static std::string ele2 = " ";
static std::string ele3 = "*";
std::string res;
repeat([&]{ res.append(ele1);}, left_right_edge * 2 + tar.size());
res.append("\n");
res.append(ele3);
repeat([&]{ res.append(ele2); }, left_right_edge - ele3.size());
res.append(tar);
repeat([&]{ res.append(ele2); }, left_right_edge - ele3.size());
res.append(ele3);
res.append("\n");
repeat([&]{ res.append(ele1);}, left_right_edge * 2 + tar.size());
return res;
}
/**
* just like this
* <[ something ]>
*/
inline std::string strong(std::string tar, size_t left_right_edge = 2)
{
static std::string ele1 = "<[";
static std::string ele2 = "]>";
std::string res;
res.append(ele1);
repeat([&]{ res.append(" ");}, left_right_edge - ele1.size());
res.append(tar);
repeat([&]{ res.append(" ");}, left_right_edge - ele2.size());
res.append(ele2);
return res;
}
inline std::string boundary(char element, size_t length = 10) {
return std::string(length, element);
}
template <typename _Executable, typename... _Args>
void invoke(_Executable& call, _Args&&... argv) {
call(std::forward<_Args>(argv)...);
}
template <typename T, typename... _Args>
void error(T&& err, _Args&&... argv) {
print("[Hipe Error] ", std::forward<T>(err), std::forward<_Args>(argv)...);
abort();
}
template <typename _Var>
void recyclePlus(_Var& var, _Var left_border, _Var right_border) {
var = (++var == right_border) ? left_border : var;
}
// future container
template <typename T>
class Futures
{
std::vector<std::future<T>> futures;
std::vector<T> results;
public:
Futures(): futures(0), results(0) {}
// return results contained by the built-in vector
std::vector<T>& get()
{
results.resize(futures.size());
for (size_t i = 0; i < futures.size(); ++i) {
results[i] = futures[i].get();
}
return results;
}
std::future<T>& operator[](size_t i) {
return futures[i];
}
void push_back(std::future<T>&& future) {
futures.push_back(std::move(future));
}
size_t size() {
return futures.size();
}
// wait for all futures
void wait()
{
for (size_t i = 0; i < futures.size(); ++i) {
futures[i].wait();
}
}
};
/**
* Time wait for the runable object
* Use std::milli or std::micro or std::nano to fill template parameter
*/
template <typename _Precision, typename F, typename... _Args>
double timewait(F&& foo, _Args&&... argv) {
auto time_start = std::chrono::steady_clock::now();
foo(std::forward<_Args>(argv)...);
auto time_end = std::chrono::steady_clock::now();
return std::chrono::duration<double, _Precision>(time_end-time_start).count();
}
/**
* Time wait for the runable object
* And the presition is std::chrono::second
*/
template <typename F, typename... _Args>
double timewait(F&& foo, _Args&&... argv) {
auto time_start = std::chrono::steady_clock::now();
foo(std::forward<_Args>(argv)...);
auto time_end = std::chrono::steady_clock::now();
return std::chrono::duration<double>(time_end-time_start).count();
}
/**
* Thread sync output stream.
* It can protect the output from multi thread competition.
*/
class SyncStream
{
std::ostream& out_stream;
std::recursive_mutex io_locker;
public:
SyncStream(std::ostream& out_stream = std::cout)
: out_stream(out_stream) {
}
template <typename T>
void print(T&& items)
{
io_locker.lock();
out_stream << std::forward<T>(items) << std::endl;
io_locker.unlock();
}
template <typename T, typename... A>
void print(T&& item, A&&... items)
{
io_locker.lock();
out_stream << std::forward<T>(item);
this->print(std::forward<A>(items)...);
io_locker.unlock();
}
};
// spin locker that use C++11 std::atomic_flag
class spinlock
{
std::atomic_flag flag = ATOMIC_FLAG_INIT;
public:
void lock() {
while (flag.test_and_set(std::memory_order_acquire));
}
void unlock() {
flag.clear(std::memory_order_release);
}
bool try_lock() {
return !flag.test_and_set();
}
};
// locker guard for spinlock
class spinlock_guard
{
spinlock* lck = nullptr;
public:
spinlock_guard(spinlock& locker) {
lck = &locker;
lck->lock();
}
~spinlock_guard() {
lck->unlock();
}
};
/**
* Task that support different kinds of callable object.
* It will alloc some heap space to save the task.
*/
class Task
{
struct BaseExec {
virtual void call() = 0;
virtual ~BaseExec() {};
};
template <typename F>
struct GenericExec: BaseExec {
F foo;
GenericExec(F&& f): foo(std::forward<F>(f)) {}
void call() override { foo();}
};
public:
Task() = default;
~Task() { delete ptr; }
Task(Task&) = delete;
Task(const Task&) = delete;
Task& operator = (const Task&) = delete;
template <typename F>
Task(F&& f): ptr(new GenericExec<F>(std::forward<F>(f))) {}
Task(Task&& tmp): ptr(tmp.ptr) { tmp.ptr = nullptr; }
template <typename Func>
void reset(Func&& f) {
delete ptr;
ptr = new GenericExec<Func>(std::forward<Func>(f));
}
bool is_setted() {
return ptr != nullptr;
}
Task& operator = (Task&& tmp) {
delete ptr;
ptr = tmp.ptr;
tmp.ptr = nullptr;
return *this;
}
void operator()() {
ptr->call();
}
private:
BaseExec* ptr = nullptr;
};
/**
* Block for adding tasks in batch
* You can regard it as a more convenient C arrays
* Notice that the element must override " = "
*/
template <typename T>
class Block
{
size_t sz = 0;
size_t end = 0;
std::unique_ptr<T[]> blok = {nullptr};
public:
Block() = default;
virtual ~Block() {}
Block(Block&& other)
: blok(std::move(other.blok))
, sz(other.sz)
, end(other.end) {
}
Block(size_t sz)
: blok(new T[sz])
, sz(sz) {
}
Block(const Block& other) = delete;
T& operator [] (size_t idx) {
return blok[idx];
}
// block's capacity
size_t capacity() {
return sz;
}
// element number
size_t element_numb() {
return end;
}
// whether have nums' space
bool is_spare_for(size_t nums) {
return (end + nums) <= sz;
}
// whether the block is full
bool is_full() {
return end == sz;
}
// add an element
void add(T&& tar) {
blok[end++] = std::forward<T>(tar);
}
// fill element. Notice that the element must can be copied !
void fill(const T& tar) {
while (end != sz) {
blok[end++] = tar;
}
}
// clean the block and delay free memory
void clean() {
end = 0;
}
// renew space for the block
void reset(size_t new_sz) {
blok.reset(new T[new_sz]);
sz = new_sz;
end = 0;
}
// release the heap space
void release() {
blok.release();
sz = 0;
end = 0;
}
// just for inherit
virtual void sort() {}
};
};
}