forked from Linkeyboard/NRCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
78 lines (63 loc) · 1.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os, sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torch.autograd.variable as Variable
import numpy as np
from os.path import join as pjoin
import time
import torchvision.models as models
class Logger(object):
def __init__(self, fpath=None):
self.console = sys.stdout
self.file = None
if fpath is not None:
self.file = open(fpath, 'w')
def __del__(self):
self.close()
def __enter__(self):
pass
def __exit__(self, *args):
self.close()
def write(self, msg):
self.console.write(msg)
if self.file is not None:
self.file.write(msg)
def flush(self):
self.console.flush()
if self.file is not None:
self.file.flush()
os.fsync(self.file.fileno())
def close(self):
self.console.close()
if self.file is not None:
self.file.close()
class Averagvalue(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(state, filename='checkpoint.pth'):
torch.save(state, filename)
def weights_init(m):
if isinstance(m, nn.Conv2d):
# xavier(m.weight.data)
m.weight.data.normal_(0, 0.01)
if m.weight.data.shape == torch.Size([1,4,1,1]):
torch.nn.init.constant_(m.weight, 0.25)
if m.bias is not None:
m.bias.data.zero_()
def psnr(mse, maxx = 1):
if mse == 0:
return 99
return 10 * np.log10(maxx * maxx / mse)