-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
392 lines (344 loc) · 15.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from torch.hub import load_state_dict_from_url
from torch.utils.model_zoo import load_url as load_state_dict_from_url
import math
import torch
import torch.nn as nn
import numpy as np
from scipy.stats import norm
import torch.nn.functional as F
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def cosine_distance(x, y):
if x.ndim == 1:
x_norm = np.linalg.norm(x)
y_norm = np.linalg.norm(y)
elif x.ndim == 2:
x_norm = np.linalg.norm(x, axis=1, keepdims=True)
y_norm = np.linalg.norm(y, axis=1, keepdims=True)
np.seterr(divide='ignore', invalid='ignore')
s = np.dot(x, y.T)/(x_norm*y_norm)
s *= -1
dist = s + 1
dist = np.clip(dist, 0, 2)
if x is y or y is None:
dist[np.diag_indices_from(dist)] = 0.0
if np.any(np.isnan(dist)):
if x.ndim == 1:
dist = 1.
else:
dist[np.isnan(dist)] = 1.
return dist
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
# define margin cnn
self.conv1_d = nn.Conv1d(101, 64, kernel_size=7, stride=2, padding=3, bias=False) # 614/2 64
self.bn1_d = nn.BatchNorm1d(64)
# 150 64
self.layer1_d = nn.Sequential(
nn.MaxPool1d(kernel_size=3, stride=2, padding=1),
nn.Conv1d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True)
)
# output 75 128
self.layer2_d = nn.Sequential(
nn.Conv1d(64, 128, kernel_size=3, stride=2, padding=1), # conv replacing pooling
nn.Conv1d(128, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True)
)
# output 37 256
self.layer3_d = nn.Sequential(
nn.Conv1d(128, 256, kernel_size=3, stride=2, padding=1), # conv replacing pooling
nn.Conv1d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm1d(256),
nn.ReLU(inplace=True)
)
# output 20 512
self.layer4_d = nn.Sequential(
nn.Conv1d(256, 512, kernel_size=3, stride=2, padding=1), # conv replacing pooling
nn.Conv1d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True)
)
self.avgpool_d = nn.AdaptiveAvgPool1d(1)
self.fc_d = nn.Linear(512, 101) # the number of margin_l=101
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, (nn.Conv2d, nn.Conv1d)):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.BatchNorm1d)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def margin_long_tail(self, x):
x = self.conv1_d(x)
x = self.bn1_d(x)
x = self.relu(x)
x = self.layer1_d(x)
x = self.layer2_d(x)
x = self.layer3_d(x)
x = self.layer4_d(x)
x = self.avgpool_d(x)
x = torch.flatten(x, 1)
x = self.fc_d(x)
return x
def margin_miu(self, x):
x = self.conv1_d(x)
x = self.bn1_d(x)
x = self.relu(x)
x = self.layer1_d(x)
x = self.layer2_d(x)
x = self.layer3_d(x)
x = self.layer4_d(x)
x = self.avgpool_d(x)
x = torch.flatten(x, 1)
x = self.fc_d(x)
x = (x-torch.min(x))/(torch.max(x)-torch.min(x))*101
return x
def margin_sigma(self, x):
x = self.conv1_d(x)
x = self.bn1_d(x)
x = self.relu(x)
x = self.layer1_d(x)
x = self.layer2_d(x)
x = self.layer3_d(x)
x = self.layer4_d(x)
x = self.avgpool_d(x)
x = torch.flatten(x, 1)
x = self.fc_d(x)
return x
@staticmethod
def gaussian(z, age, m_p_miu, m_p_sigma): # Calculate the Gaussian distribution for each age
x = torch.linspace(0, 100, 101).expand([z.shape[0], -1]).cuda()
pi = torch.Tensor([3.1415926]).cuda()
u = m_p_miu.T[age]
sig = m_p_sigma.T[age]
m_p = torch.exp(-torch.pow((x - u), 2)/(2 * torch.pow(sig, 2))) / (torch.sqrt(2 * pi) * sig)
return m_p
@staticmethod
def distributed_softmax(x, margin):
a = torch.ones(x.shape[1]).cuda()
mask = torch.diag(a).cuda() # 1D vector Output a 2D square matrix with input as diagonal elements
mask = (1 - mask).expand((x.shape[0], -1, -1)) # diagonal is 0, the others are 1
b = x.expand([x.shape[1], -1, -1]).permute(1, 0, 2) # batch_size, multi, score
b = b * mask
b = torch.sum(torch.exp(b), dim=2) - 1 # eliminate exp(0) sum of the negative score
y = torch.exp(x - margin) / (b + torch.exp(x - margin))
return y
def _forward_impl(self, x, age, pro, intra, inter):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
# propotype update
z = x.cpu().clone().detach().numpy()
age = age.cpu().clone().detach().numpy()
pro_t = pro[0].copy()
intra_t = intra.copy()
inter_t = inter.copy()
for i in range(z.shape[0]):
temp = pro[0][age[i], :].copy() # shallow copy
pro[0][age[i]] = pro[0][age[i], :] + (z[i] - pro[0][age[i], :]) / (pro[1][age[i]] + 1) # update Prototype
pro[1][age[i]] += 1 # update instance number
# cosine_distances 0~2 Divisor 0 is set to 1 for unknown relationship
intra[age[i]] = intra[age[i]] + cosine_distance(z[i], temp) * cosine_distance(z[i], pro[0][age[i]])
# Calculate distance between two matrices and multi-row vectors
inter = cosine_distance(pro[0], pro[0])
delta_pro = np.concatenate((pro[0]-pro_t, intra-intra_t, inter-inter_t), axis=1)[np.newaxis, :]
pro_input = np.concatenate((pro[0], intra), axis=1)[np.newaxis, :]
m_l = self.margin_long_tail(torch.from_numpy(delta_pro).cuda())
m_p_miu = self.margin_miu(torch.from_numpy(pro_input).cuda())
m_p_sigma = self.margin_sigma(torch.from_numpy(pro_input).cuda())
m_p = self.gaussian(z, age, m_p_miu, m_p_sigma)
margin = m_p + 0.1*m_l
# The margin is normalized to 0 as the mean and 1 as the variance
margin = (margin-torch.mean(margin, dim=1).expand([101, -1]).permute(1, 0))/torch.std(margin, dim=1).expand([101, -1]).permute(1, 0)
margin = margin*0.01
if not False: #cfg.model.margin: эта штука False у них стоит
margin = margin*0
x = self.fc(x)
if margin.requires_grad:
x = F.softmax(x-margin, dim=1) # make a baseline
# x = F.softmax(x-margin, dim=1)
else:
x =F.softmax(x, dim=1)
# L1 normalize
# x = F.normalize(x-margin, p=1, dim=1) # negative logarithm possible
return x, pro, intra, inter
def forward(self, x, age, proc, intra, inter):
return self._forward_impl(x, age, proc, intra, inter)
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
def _resnet(arch, block, layers, pretrained, progress, **kwargs):
model = ResNet(block, layers, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
# partial load pretrained model
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in state_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def resnet34(pretrained=False, progress=True, **kwargs):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
**kwargs)