-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetrics.py
120 lines (102 loc) · 3.85 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import numpy as np
import torch
def tc_compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
simple_accuracy = (preds == labels).mean()
acc = accuracy_score(labels, preds)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall,
'simple_accuracy': simple_accuracy
}
def rp_compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
simple_accuracy = (preds == labels).mean()
ranks = []
hits = []
for i in range(10):
hits.append([])
for i, pred in enumerate(pred.predictions):
rel_values = torch.tensor(pred)
_, argsort1 = torch.sort(rel_values, descending=True)
argsort1 = argsort1.cpu().numpy()
rank = np.where(argsort1 == labels[i])[0][0]
ranks.append(rank + 1)
for hits_level in range(10):
if rank <= hits_level:
hits[hits_level].append(1.0)
else:
hits[hits_level].append(0.0)
metrics_with_values = {
'raw_mean_rank': np.mean(ranks),
'simple_accuracy': simple_accuracy
}
for i in [0, 2, 9]:
metrics_with_values[f'raw_hits @{i + 1}'] = np.mean(hits[i])
return metrics_with_values
def htp_compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
simple_accuracy = (preds == labels).mean()
ranks = []
ranks_left = []
ranks_right = []
hits_left = []
hits_right = []
hits = []
top_ten_hit_count = 0
for i in range(10):
hits_left.append([])
hits_right.append([])
hits.append([])
for triple_id in range(0, len(labels), 41):
preds = pred.predictions[triple_id:triple_id+41, 1]
rel_values = torch.tensor(preds)
_, argsort1 = torch.sort(rel_values, descending=True)
argsort1 = argsort1.cpu().numpy()
rank1 = np.where(argsort1 == 0)[0][0]
ranks.append(rank1 + 1)
ranks_left.append(rank1 + 1)
if rank1 < 10:
top_ten_hit_count += 1
rel_values = torch.tensor(preds)
_, argsort1 = torch.sort(rel_values, descending=True)
argsort1 = argsort1.cpu().numpy()
rank2 = np.where(argsort1 == 0)[0][0]
ranks.append(rank2 + 1)
ranks_right.append(rank2 + 1)
if rank2 < 10:
top_ten_hit_count += 1
for hits_level in range(10):
if rank1 <= hits_level:
hits[hits_level].append(1.0)
hits_left[hits_level].append(1.0)
else:
hits[hits_level].append(0.0)
hits_left[hits_level].append(0.0)
if rank2 <= hits_level:
hits[hits_level].append(1.0)
hits_right[hits_level].append(1.0)
else:
hits[hits_level].append(0.0)
hits_right[hits_level].append(0.0)
metrics_with_values = {
'simple_accuracy': simple_accuracy,
}
for i in [0, 2, 9]:
metrics_with_values[f'hits_left_@{i+1}'] = np.mean(hits_left[i])
metrics_with_values[f'hits_right_@{i + 1}'] = np.mean(hits_right[i])
metrics_with_values[f'hits_@{i + 1}'] = np.mean(hits[i])
metrics_with_values[f'mean_rank_left'] = np.mean(ranks_left)
metrics_with_values[f'mean_rank_right'] = np.mean(ranks_right)
metrics_with_values[f'mean_rank'] = np.mean(ranks)
metrics_with_values['mean_reciprocal_rank_left'] = np.mean(1. / np.array(ranks_left))
metrics_with_values['mean_reciprocal_rank_right'] = np.mean(1. / np.array(ranks_right))
metrics_with_values['mean_reciprocal_rank'] = np.mean(1. / np.array(ranks))
return metrics_with_values