-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_panoptic.py
101 lines (82 loc) · 2.99 KB
/
main_panoptic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import logging
import os
import hydra
import torch
from dotenv import load_dotenv
from omegaconf import DictConfig, OmegaConf
from trainer.trainer import PanopticSegmentation
from utils.utils import flatten_dict, RegularCheckpointing
from pytorch_lightning import Trainer, seed_everything
def get_parameters(cfg: DictConfig):
logger = logging.getLogger(__name__)
load_dotenv(".env")
# parsing input parameters
seed_everything(cfg.general.seed)
# getting basic configuration
if cfg.general.get("gpus", None) is None:
cfg.general.gpus = os.environ.get("CUDA_VISIBLE_DEVICES", None)
loggers = []
if not os.path.exists(cfg.general.save_dir):
os.makedirs(cfg.general.save_dir)
else:
print("EXPERIMENT ALREADY EXIST")
cfg.general.ckpt_path = f"{cfg.general.save_dir}/last-epoch.ckpt"
for log in cfg.logging:
print(log)
loggers.append(hydra.utils.instantiate(log))
loggers[-1].log_hyperparams(flatten_dict(OmegaConf.to_container(cfg, resolve=True)))
model = PanopticSegmentation(cfg)
logger.info(flatten_dict(OmegaConf.to_container(cfg, resolve=True)))
return cfg, model, loggers
@hydra.main(config_path="conf", config_name="config_panoptic_4d.yaml")
def train(cfg: DictConfig):
os.chdir(hydra.utils.get_original_cwd())
cfg, model, loggers = get_parameters(cfg)
callbacks = []
for cb in cfg.callbacks:
callbacks.append(hydra.utils.instantiate(cb))
callbacks.append(RegularCheckpointing())
# torch.use_deterministic_algorithms(True)
runner = Trainer(
logger=loggers,
accelerator="gpu",
devices=1,
callbacks=callbacks,
default_root_dir=str(cfg.general.save_dir),
**cfg.trainer,
)
runner.fit(model, ckpt_path=cfg.general.ckpt_path)
@hydra.main(config_path="conf", config_name="config_panoptic_4d.yaml")
def validate(cfg: DictConfig):
# because hydra wants to change dir for some reason
os.chdir(hydra.utils.get_original_cwd())
cfg, model, loggers = get_parameters(cfg)
runner = Trainer(
logger=loggers,
accelerator="gpu",
devices=1,
default_root_dir=str(cfg.general.save_dir),
)
runner.validate(model=model, ckpt_path=cfg.general.ckpt_path)
@hydra.main(config_path="conf", config_name="config_panoptic_4d.yaml")
def test(cfg: DictConfig):
# because hydra wants to change dir for some reason
os.chdir(hydra.utils.get_original_cwd())
cfg, model, loggers = get_parameters(cfg)
runner = Trainer(
logger=loggers,
accelerator="gpu",
devices=1,
default_root_dir=str(cfg.general.save_dir),
)
runner.test(model=model, ckpt_path=cfg.general.ckpt_path)
@hydra.main(config_path="conf", config_name="config_panoptic_4d.yaml")
def main(cfg: DictConfig):
if cfg["general"]["mode"] == "train":
train(cfg)
elif cfg["general"]["mode"] == "validate":
validate(cfg)
else:
test(cfg)
if __name__ == "__main__":
main()