-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathTDC1000.cpp
707 lines (610 loc) · 35.4 KB
/
TDC1000.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#include "TDC1000.h"
#include <SPI.h>
#define TDC1000_SPI_CLK_MAX (int32_t(20000000))
#define TDC1000_SPI_MODE (SPI_MODE0)
#define TDC1000_SPI_ORDER (MSBFIRST)
#define TDC1000_SPI_REG_ADDR_MASK (0x1Fu)
#define TDC1000_SPI_REG_READ (0x00u)
#define TDC1000_SPI_REG_WRITE (0x40u)
#define TDC1000_REG_ADR_CONFIG_0 (0x00u)
#define TDC1000_REG_ADR_CONFIG_1 (0x01u)
#define TDC1000_REG_ADR_CONFIG_2 (0x02u)
#define TDC1000_REG_ADR_CONFIG_3 (0x03u)
#define TDC1000_REG_ADR_CONFIG_4 (0x04u)
#define TDC1000_REG_ADR_TOF_1 (0x05u)
#define TDC1000_REG_ADR_TOF_0 (0x06u)
#define TDC1000_REG_ADR_ERROR_FLAGS (0x07u)
#define TDC1000_REG_ADR_TIMEOUT (0x08u)
#define TDC1000_REG_ADR_CLOCK_RATE (0x09u)
#define TDC1000_REG_SHIFT_CONFIG_0_TX_FREQ_DIV (5)
#define TDC1000_REG_MASK_CONFIG_0_TX_FREQ_DIV (0b111u)
#define TDC7200_REG_VAL_CONFIG_0_TX_FREQ_DIV(num) (1 << (num+1))
#define TDC1000_REG_SHIFT_CONFIG_0_NUM_TX (0)
#define TDC7200_REG_VAL_CONFIG_0_NUM_TX(num) (num)
#define TDC1000_REG_VAL_CONFIG_0_NUM_TX_MIN (0)
#define TDC1000_REG_VAL_CONFIG_0_NUM_TX_MAX (31)
#define TDC1000_REG_MASK_CONFIG_0_NUM_TX (0b11111u)
#define TDC1000_REG_DEFAULTS_CONFIG0 (0x45u)
#define TDC1000_REG_SHIFT_CONFIG_1_NUM_AVG (3)
#define TDC1000_REG_MASK_CONFIG_1_NUM_AVG (0b111u)
#define TDC7200_REG_VAL_CONFIG_1_NUM_AVG(num) (1 << (num))
#define TDC1000_REG_SHIFT_CONFIG_1_NUM_RX (0)
#define TDC1000_REG_MASK_CONFIG_1_NUM_RX (0b111u)
#define TDC7200_REG_VAL_CONFIG_1_NUM_RX(num) (num)
#define TDC1000_REG_VAL_CONFIG_1_NUM_RX_MIN (0)
#define TDC1000_REG_VAL_CONFIG_1_NUM_RX_MAX (7)
#define TDC1000_REG_DEFAULTS_CONFIG1 (0x40u)
#define TDC1000_REG_SHIFT_CONFIG_2_VCOM_SEL (7)
#define TDC1000_REG_MASK_CONFIG_2_VCOM_SEL (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_2_MEAS_MODE (6)
#define TDC1000_REG_MASK_CONFIG_2_MEAS_MODE (0b1u)
#define TDC1000_REG_VAL_CONFIG_2_MEAS_MODE_TOF (0)
#define TDC1000_REG_VAL_CONFIG_2_MEAS_MODE_TEMP (1)
#define TDC1000_REG_SHIFT_CONFIG_2_DAMPING (5)
#define TDC1000_REG_MASK_CONFIG_2_DAMPING (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_2_CH_SWP (4)
#define TDC1000_REG_MASK_CONFIG_2_CH_SWP (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_2_EXT_CHSEL (3)
#define TDC1000_REG_MASK_CONFIG_2_EXT_CHSEL (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_2_CH_SEL (2)
#define TDC1000_REG_MASK_CONFIG_2_CH_SEL (0b1u)
#define TDC1000_REG_VAL_CONFIG_2_CH_SEL(num) ((num)+1)
#define TDC1000_REG_SHIFT_CONFIG_2_TOF_MEAS_MODE (0)
#define TDC1000_REG_MASK_CONFIG_2_TOF_MEAS_MODE (0x03u)
#define TDC1000_REG_VAL_CONFIG_2_TOF_MEAS_MODE_MIN (0)
#define TDC1000_REG_VAL_CONFIG_2_TOF_MEAS_MODE_MAX (2)
#define TDC7200_REG_VAL_CONFIG_2_TOF_MEAS_MODE(num) (num)
#define TDC1000_REG_SHIFT_CONFIG_3_TEMP_MODE (6)
#define TDC1000_REG_MASK_CONFIG_3_TEMP_MODE (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_3_TEMP_RTD_SEL (5)
#define TDC1000_REG_MASK_CONFIG_3_TEMP_RTD_SEL (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_3_TEMP_CLK_DIV (4)
#define TDC1000_REG_MASK_CONFIG_3_TEMP_CLK_DIV (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_3_BLANKING (3)
#define TDC1000_REG_MASK_CONFIG_3_BLANKING (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_3_ECHO_QUAL_THLD (0)
#define TDC1000_REG_MASK_CONFIG_3_ECHO_QUAL_THLD (0b111u)
#define TDC1000_REG_VAL_CONFIG_3_ECHO_QUAL_THLD_MIN (0)
#define TDC1000_REG_VAL_CONFIG_3_ECHO_QUAL_THLD_MAX (7)
#define TDC1000_REG_SHIFT_CONFIG_4_RECEIVE_MODE (6)
#define TDC1000_REG_MASK_CONFIG_4_RECEIVE_MODE (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_4_TRIG_EDGE_POLARITY (5)
#define TDC1000_REG_MASK_CONFIG_4_TRIG_EDGE_POLARITY (0b1u)
#define TDC1000_REG_SHIFT_CONFIG_4_TX_PH_SHIFT_POS (0)
#define TDC1000_REG_MASK_CONFIG_4_TX_PH_SHIFT_POS (0b11111u)
#define TDC1000_REG_VAL_CONFIG_4_TX_PH_SHIFT_POS(num) (num)
#define TDC1000_REG_VAL_CONFIG_4_TX_PH_SHIFT_POS_MIN (0)
#define TDC1000_REG_VAL_CONFIG_4_TX_PH_SHIFT_POS_MAX (31)
#define TDC1000_REG_SHIFT_TOF_1_PGA_GAIN (5)
#define TDC1000_REG_MASK_TOF_1_PGA_GAIN (0b111u)
#define TDC1000_REG_VAL_TOF_1_PGA_GAIN(num) (3*(num))
#define TDC1000_REG_SHIFT_TOF_1_PGA_CTRL (4)
#define TDC1000_REG_MASK_TOF_1_PGA_CTRL (0b1u)
#define TDC1000_REG_VAL_TOF_1_PGA_CTRL_ACTIVE (0u)
#define TDC1000_REG_VAL_TOF_1_PGA_CTRL_BYPASSED (1u)
#define TDC1000_REG_SHIFT_TOF_1_LNA_CTRL (3)
#define TDC1000_REG_MASK_TOF_1_LNA_CTRL (0b1u)
#define TDC1000_REG_VAL_TOF_1_LNA_CTRL_ACTIVE (0u)
#define TDC1000_REG_VAL_TOF_1_LNA_CTRL_BYPASSED (1u)
#define TDC1000_REG_SHIFT_TOF_1_LNA_FB (2)
#define TDC1000_REG_MASK_TOF_1_LNA_FB (0b1u)
#define TDC1000_REG_SHIFT_TOF_1_TIMING_REG (0)
#define TDC1000_REG_MASK_TOF_1_TIMING_REG (0b11u)
#define TDC1000_REG_VAL_TOF_1_PGA_GAIN_MIN (0)
#define TDC1000_REG_VAL_TOF_1_PGA_GAIN_MAX (7)
#define TDC1000_REG_SHIFT_TOF_0_TIMING_REG (0)
#define TDC1000_REG_MASK_TOF_0_TIMING_REG (0b11111111u)
#define TDC1000_REG_VAL_TOF_TIMING_REG_MIN (0u)
#define TDC1000_REG_VAL_TOF_TIMING_REG_FORCE_SHORT_MAX (29u)
#define TDC1000_REG_VAL_TOF_TIMING_REG_MAX (1023u)
#define TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_SIG_WEAK (2)
#define TDC1000_REG_MASK_ERROR_FLAGS_ERR_SIG_WEAK (0b1u)
#define TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_NO_SIG (1)
#define TDC1000_REG_MASK_ERROR_FLAGS_ERR_NO_SIG (0b1u)
#define TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_SIG_HIGH (0)
#define TDC1000_REG_MASK_ERROR_FLAGS_ERR_SIG_HIGH (0b1u)
#define TDC1000_REG_SHIFT_TIMEOUT_FORCE_SHORT_TOF (6)
#define TDC1000_REG_MASK_TIMEOUT_FORCE_SHORT_TOF (0b1u)
#define TDC1000_REG_VAL_TIMEOUT_FORCE_SHORT_TOF_DISABLED (0u)
#define TDC1000_REG_VAL_TIMEOUT_FORCE_SHORT_TOF_ENABLED (1u)
#define TDC1000_REG_SHIFT_TIMEOUT_SHORT_TOF_BLANK_PERIOD (3)
#define TDC1000_REG_MASK_TIMEOUT_SHORT_TOF_BLANK_PERIOD (0b111u)
#define TDC1000_REG_VAL_TIMEOUT_SHORT_TOF_BLANK_PERIOD(num) (1u << ((num) + 3))
#define TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT (2)
#define TDC1000_REG_MASK_TIMEOUT_ECHO_TIMEOUT (0b1u)
#define TDC1000_REG_VAL_TIMEOUT_ECHO_TIMEOUT_ENABLED (0u)
#define TDC1000_REG_VAL_TIMEOUT_ECHO_TIMEOUT_DISABLED (1u)
#define TDC1000_REG_SHIFT_TIMEOUT_TOF_TIMEOUT_CTRL (0)
#define TDC1000_REG_MASK_TIMEOUT_TOF_TIMEOUT_CTRL (0b11u)
#define TDC1000_REG_VAL_TIMEOUT_TOF_TIMEOUT_CTRL(num) (1u << ((num) + 7))
#define TDC1000_REG_SHIFT_CLOCKIN_DIV (2)
#define TDC1000_REG_MASK_CLOCKIN_DIV (0b1u)
#define TDC1000_REG_VAL_CLOCKIN_DIV(num) ((num)+1)
#define TDC1000_REG_SHIFT_AUTOZERO_PERIOD (0)
#define TDC1000_REG_MASK_AUTOZERO_PERIOD (0b11u)
#define TDC1000_REG_VAL_AUTOZERO_PERIOD(num) (1u << ((num) + 6))
#define ARRAY_SIZE(x) ((sizeof(x))/sizeof(x[0]))
TDC1000::TDC1000(const uint8_t pinCs, const uint8_t pinReset)
: m_pinCs(pinCs),
m_pinReset(pinReset)
{
}
bool TDC1000::begin()
{
// -- Configure SPI
digitalWrite(m_pinCs, HIGH);
pinMode(m_pinCs, OUTPUT);
SPI.begin();
// -- Reset TDC1000
pinMode(m_pinReset, OUTPUT);
digitalWrite(m_pinReset, HIGH);
delay(10);
digitalWrite(m_pinReset, LOW);
delay(10);
// -- Comms sanity check
if ( (spiReadReg8(TDC1000_REG_ADR_CONFIG_0) != TDC1000_REG_DEFAULTS_CONFIG0)
or (spiReadReg8(TDC1000_REG_ADR_CONFIG_1) != TDC1000_REG_DEFAULTS_CONFIG1) )
{
return false;
}
return true;
}
bool TDC1000::setTriggerEdge(const bool rising)
{
spiRmwReg8( TDC1000_REG_ADR_CONFIG_4,
TDC1000_REG_MASK_CONFIG_4_TRIG_EDGE_POLARITY << TDC1000_REG_SHIFT_CONFIG_4_TRIG_EDGE_POLARITY,
(rising ? 0x00: 0x01) << TDC1000_REG_SHIFT_CONFIG_4_TRIG_EDGE_POLARITY );
return true;
}
bool TDC1000::setTx(const TxFreqDivider div, const uint8_t pulses, const uint8_t shift,
const bool damping)
{
if (pulses > TDC1000_REG_VAL_CONFIG_0_NUM_TX_MAX) return false;
if (shift > TDC1000_REG_VAL_CONFIG_4_TX_PH_SHIFT_POS_MAX) return false;
uint8_t val = spiReadReg8(TDC1000_REG_ADR_CONFIG_0);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_CONFIG_0_TX_FREQ_DIV << TDC1000_REG_SHIFT_CONFIG_0_TX_FREQ_DIV)
| (TDC1000_REG_MASK_CONFIG_0_NUM_TX << TDC1000_REG_SHIFT_CONFIG_0_NUM_TX) );
val |= uint8_t(div) << TDC1000_REG_SHIFT_CONFIG_0_TX_FREQ_DIV;
val |= pulses << TDC1000_REG_SHIFT_CONFIG_0_NUM_TX;
spiWriteReg8(TDC1000_REG_ADR_CONFIG_0, val);
spiRmwReg8( TDC1000_REG_ADR_CONFIG_4,
TDC1000_REG_MASK_CONFIG_4_TX_PH_SHIFT_POS << TDC1000_REG_SHIFT_CONFIG_4_TX_PH_SHIFT_POS,
shift << TDC1000_REG_SHIFT_CONFIG_4_TX_PH_SHIFT_POS );
val = spiReadReg8(TDC1000_REG_ADR_CONFIG_2);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_CONFIG_2_DAMPING << TDC1000_REG_SHIFT_CONFIG_2_DAMPING) );
if (damping) val |= 1u << TDC1000_REG_SHIFT_CONFIG_2_DAMPING;
spiWriteReg8(TDC1000_REG_ADR_CONFIG_2, val);
return true;
}
bool TDC1000::setRx(const bool multiEcho)
{
spiRmwReg8( TDC1000_REG_ADR_CONFIG_4,
TDC1000_REG_MASK_CONFIG_4_RECEIVE_MODE << TDC1000_REG_SHIFT_CONFIG_4_RECEIVE_MODE,
(multiEcho ? 1u : 0u) << TDC1000_REG_SHIFT_CONFIG_4_RECEIVE_MODE );
return true;
}
bool TDC1000::setRxSensitivity(const RxDacEchoThreshold dacTh, const RxPgaGain pgaGain, const RxLnaFbMode lnaFb )
{
spiRmwReg8( TDC1000_REG_ADR_CONFIG_3,
TDC1000_REG_MASK_CONFIG_3_ECHO_QUAL_THLD << TDC1000_REG_SHIFT_CONFIG_3_ECHO_QUAL_THLD,
uint8_t(dacTh) << TDC1000_REG_SHIFT_CONFIG_3_ECHO_QUAL_THLD );
uint8_t val = spiReadReg8(TDC1000_REG_ADR_TOF_1);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_TOF_1_PGA_GAIN << TDC1000_REG_SHIFT_TOF_1_PGA_GAIN)
| (TDC1000_REG_MASK_TOF_1_PGA_CTRL << TDC1000_REG_SHIFT_TOF_1_PGA_CTRL)
| (TDC1000_REG_MASK_TOF_1_LNA_CTRL << TDC1000_REG_SHIFT_TOF_1_LNA_CTRL)
| (TDC1000_REG_MASK_TOF_1_LNA_FB << TDC1000_REG_SHIFT_TOF_1_LNA_FB) );
if (RxPgaGain::disabled == pgaGain)
{
val |= TDC1000_REG_VAL_TOF_1_PGA_CTRL_BYPASSED << TDC1000_REG_SHIFT_TOF_1_PGA_CTRL;
}
else
{
val |= TDC1000_REG_VAL_TOF_1_PGA_CTRL_ACTIVE << TDC1000_REG_SHIFT_TOF_1_PGA_CTRL;
val |= uint8_t(pgaGain) << TDC1000_REG_SHIFT_TOF_1_PGA_GAIN;
}
if (RxLnaFbMode::disabled == lnaFb)
{
val |= TDC1000_REG_VAL_TOF_1_LNA_CTRL_BYPASSED << TDC1000_REG_SHIFT_TOF_1_LNA_CTRL;
}
else
{
val |= TDC1000_REG_VAL_TOF_1_LNA_CTRL_ACTIVE << TDC1000_REG_SHIFT_TOF_1_LNA_CTRL;
val |= uint8_t(lnaFb) << TDC1000_REG_SHIFT_TOF_1_LNA_FB;
}
spiWriteReg8(TDC1000_REG_ADR_TOF_1, val);
return true;
}
bool TDC1000::setRepeat(const TxRxCycles cycles, const uint8_t expectedEvents)
{
if (expectedEvents > TDC1000_REG_VAL_CONFIG_1_NUM_RX_MAX) return false;
uint8_t val = spiReadReg8(TDC1000_REG_ADR_CONFIG_1);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_CONFIG_1_NUM_AVG << TDC1000_REG_SHIFT_CONFIG_1_NUM_AVG)
| (TDC1000_REG_MASK_CONFIG_1_NUM_RX << TDC1000_REG_SHIFT_CONFIG_1_NUM_RX) );
val |= uint8_t(cycles) << TDC1000_REG_SHIFT_CONFIG_1_NUM_AVG;
val |= expectedEvents << TDC1000_REG_SHIFT_CONFIG_1_NUM_RX;
spiWriteReg8(TDC1000_REG_ADR_CONFIG_1, val);
return true;
}
bool TDC1000::setMeasureTOF(const TxRxChannel chanSel, const TofMode mode)
{
uint8_t val = spiReadReg8(TDC1000_REG_ADR_CONFIG_2);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_CONFIG_2_CH_SWP << TDC1000_REG_SHIFT_CONFIG_2_CH_SWP)
| (TDC1000_REG_MASK_CONFIG_2_EXT_CHSEL << TDC1000_REG_SHIFT_CONFIG_2_EXT_CHSEL)
| (TDC1000_REG_MASK_CONFIG_2_CH_SEL << TDC1000_REG_SHIFT_CONFIG_2_CH_SEL)
| (TDC1000_REG_MASK_CONFIG_2_MEAS_MODE << TDC1000_REG_SHIFT_CONFIG_2_MEAS_MODE)
| (TDC1000_REG_MASK_CONFIG_2_TOF_MEAS_MODE << TDC1000_REG_SHIFT_CONFIG_2_TOF_MEAS_MODE) );
if (TxRxChannel::External == chanSel) val |= 1u << TDC1000_REG_SHIFT_CONFIG_2_EXT_CHSEL;
else if (TxRxChannel::Swap == chanSel) val |= 1u << TDC1000_REG_SHIFT_CONFIG_2_CH_SWP;
else if (TxRxChannel::Channel2 == chanSel) val |= 1u << TDC1000_REG_SHIFT_CONFIG_2_CH_SEL;
val |= uint8_t(mode) << TDC1000_REG_SHIFT_CONFIG_2_TOF_MEAS_MODE;
val |= TDC1000_REG_VAL_CONFIG_2_MEAS_MODE_TOF << TDC1000_REG_SHIFT_CONFIG_2_MEAS_MODE;
spiWriteReg8(TDC1000_REG_ADR_CONFIG_2, val);
return true;
}
bool TDC1000::setMeasureTemp(const TempMode mode, const TempRtdSel rtd, const TempClkDiv div)
{
spiRmwReg8( TDC1000_REG_ADR_CONFIG_2,
TDC1000_REG_MASK_CONFIG_2_MEAS_MODE << TDC1000_REG_SHIFT_CONFIG_2_MEAS_MODE,
TDC1000_REG_VAL_CONFIG_2_MEAS_MODE_TEMP << TDC1000_REG_SHIFT_CONFIG_2_MEAS_MODE );
uint8_t val = spiReadReg8(TDC1000_REG_ADR_CONFIG_3);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_CONFIG_3_TEMP_MODE << TDC1000_REG_SHIFT_CONFIG_3_TEMP_MODE)
| (TDC1000_REG_MASK_CONFIG_3_TEMP_RTD_SEL << TDC1000_REG_SHIFT_CONFIG_3_TEMP_RTD_SEL)
| (TDC1000_REG_MASK_CONFIG_3_TEMP_CLK_DIV << TDC1000_REG_SHIFT_CONFIG_3_TEMP_CLK_DIV) );
val |= uint8_t(mode) << TDC1000_REG_SHIFT_CONFIG_3_TEMP_MODE;
val |= uint8_t(rtd) << TDC1000_REG_SHIFT_CONFIG_3_TEMP_RTD_SEL;
val |= uint8_t(div) << TDC1000_REG_SHIFT_CONFIG_3_TEMP_CLK_DIV;
spiWriteReg8(TDC1000_REG_ADR_CONFIG_3, val);
return true;
}
bool TDC1000::setTofMeasuementShort(const T0 clkDiv, const TxAutoZeroPeriod autoZero, const TxBlankPeriod blank,
const TxEchoTimeoutPeriod echoTimeout)
{
uint8_t val = spiReadReg8(TDC1000_REG_ADR_CLOCK_RATE);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_CLOCKIN_DIV << TDC1000_REG_SHIFT_CLOCKIN_DIV)
| (TDC1000_REG_MASK_AUTOZERO_PERIOD << TDC1000_REG_SHIFT_AUTOZERO_PERIOD) );
val |= uint8_t(clkDiv) << TDC1000_REG_SHIFT_CLOCKIN_DIV;
val |= uint8_t(autoZero) << TDC1000_REG_SHIFT_AUTOZERO_PERIOD;
spiWriteReg8(TDC1000_REG_ADR_CLOCK_RATE, val);
val = spiReadReg8(TDC1000_REG_ADR_TIMEOUT);
val &= ~( (TDC1000_REG_MASK_TIMEOUT_FORCE_SHORT_TOF << TDC1000_REG_SHIFT_TIMEOUT_FORCE_SHORT_TOF)
| (TDC1000_REG_MASK_TIMEOUT_SHORT_TOF_BLANK_PERIOD << TDC1000_REG_SHIFT_TIMEOUT_SHORT_TOF_BLANK_PERIOD)
| (TDC1000_REG_MASK_TIMEOUT_ECHO_TIMEOUT << TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT)
| (TDC1000_REG_MASK_TIMEOUT_TOF_TIMEOUT_CTRL << TDC1000_REG_SHIFT_TIMEOUT_TOF_TIMEOUT_CTRL) );
val |= TDC1000_REG_VAL_TIMEOUT_FORCE_SHORT_TOF_ENABLED << TDC1000_REG_SHIFT_TIMEOUT_FORCE_SHORT_TOF;
val |= uint8_t(blank) << TDC1000_REG_SHIFT_TIMEOUT_SHORT_TOF_BLANK_PERIOD;
if (TxEchoTimeoutPeriod::disabled == echoTimeout)
{
val |= TDC1000_REG_VAL_TIMEOUT_ECHO_TIMEOUT_DISABLED << TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT;
}
else
{
val |= TDC1000_REG_VAL_TIMEOUT_ECHO_TIMEOUT_ENABLED << TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT;
val |= uint8_t(echoTimeout) << TDC1000_REG_SHIFT_TIMEOUT_TOF_TIMEOUT_CTRL;
}
spiWriteReg8(TDC1000_REG_ADR_TIMEOUT, val);
return true;
}
bool TDC1000::setTofMeasuementStandard(const T0 clkDiv, const TxAutoZeroPeriod autoZero, const TxEchoTimeoutPeriod echoTimeout,
const uint16_t timingReg, const bool blanking)
{
if (timingReg <= TDC1000_REG_VAL_TOF_TIMING_REG_FORCE_SHORT_MAX) return false; // Implicit short TOF mode, so wrong value.
if (timingReg > TDC1000_REG_VAL_TOF_TIMING_REG_MAX) return false;
uint8_t val = spiReadReg8(TDC1000_REG_ADR_CLOCK_RATE);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_CLOCKIN_DIV << TDC1000_REG_SHIFT_CLOCKIN_DIV)
| (TDC1000_REG_MASK_AUTOZERO_PERIOD << TDC1000_REG_SHIFT_AUTOZERO_PERIOD) );
val |= uint8_t(clkDiv) << TDC1000_REG_SHIFT_CLOCKIN_DIV;
val |= uint8_t(autoZero) << TDC1000_REG_SHIFT_AUTOZERO_PERIOD;
spiWriteReg8(TDC1000_REG_ADR_CLOCK_RATE, val);
val = spiReadReg8(TDC1000_REG_ADR_TIMEOUT);
val &= ~( (TDC1000_REG_MASK_TIMEOUT_FORCE_SHORT_TOF << TDC1000_REG_SHIFT_TIMEOUT_FORCE_SHORT_TOF)
| (TDC1000_REG_MASK_TIMEOUT_ECHO_TIMEOUT << TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT)
| (TDC1000_REG_MASK_TIMEOUT_TOF_TIMEOUT_CTRL << TDC1000_REG_SHIFT_TIMEOUT_TOF_TIMEOUT_CTRL) );
val |= TDC1000_REG_VAL_TIMEOUT_FORCE_SHORT_TOF_DISABLED << TDC1000_REG_SHIFT_TIMEOUT_FORCE_SHORT_TOF;
if (TxEchoTimeoutPeriod::disabled == echoTimeout)
{
val |= TDC1000_REG_VAL_TIMEOUT_ECHO_TIMEOUT_DISABLED << TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT;
}
else
{
val |= TDC1000_REG_VAL_TIMEOUT_ECHO_TIMEOUT_ENABLED << TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT;
val |= uint8_t(echoTimeout) << TDC1000_REG_SHIFT_TIMEOUT_TOF_TIMEOUT_CTRL;
}
spiWriteReg8(TDC1000_REG_ADR_TIMEOUT, val);
val = spiReadReg8(TDC1000_REG_ADR_TOF_1);
// Clear bits we are going to modify.
val &= ~( (TDC1000_REG_MASK_TOF_1_TIMING_REG << TDC1000_REG_SHIFT_TOF_1_TIMING_REG) );
val |= ((timingReg >> 8) & TDC1000_REG_MASK_TOF_1_TIMING_REG) << TDC1000_REG_SHIFT_TOF_1_TIMING_REG;
spiWriteReg8(TDC1000_REG_ADR_TOF_1, val);
val = (timingReg & TDC1000_REG_MASK_TOF_0_TIMING_REG) << TDC1000_REG_SHIFT_TOF_0_TIMING_REG;
spiWriteReg8(TDC1000_REG_ADR_TOF_0, val);
spiRmwReg8( TDC1000_REG_ADR_CONFIG_3,
TDC1000_REG_MASK_CONFIG_3_BLANKING << TDC1000_REG_SHIFT_CONFIG_3_BLANKING,
(blanking ? 1u : 0u) << TDC1000_REG_SHIFT_CONFIG_3_BLANKING );
return true;
}
void TDC1000::getErrorFlags(bool &sigWeak, bool &noSig, bool &sigHigh)
{
uint8_t val = spiReadReg8(TDC1000_REG_ADR_ERROR_FLAGS);
sigWeak = val & (1u << TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_SIG_WEAK);
noSig = val & (1u << TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_NO_SIG);
sigHigh = val & (1u << TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_SIG_HIGH);
}
void TDC1000::clearErrorFlags()
{
// Writing a 1 to ERR_SIG_HIGH will reset all the error flags and reset the ERRB pin to high.
spiWriteReg8(TDC1000_REG_ADR_ERROR_FLAGS, 1u << TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_SIG_HIGH);
}
void TDC1000::resetStatemachine()
{
// Writing a 1 to this field resets the state machine, halts active measurements and returns
// the device to the SLEEP or READY mode and resets the average counter and automatic channel
// selection in measurement Mode 2.
spiWriteReg8(TDC1000_REG_ADR_ERROR_FLAGS, 1u << TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_NO_SIG);
}
/*
bool TDC1000::TEST()
{
// Configure for resistive feedback!!! by setting the LNA_FB bit in the TOF_1 register to 1
uint8_t config;
config = 0 << TDC1000_REG_SHIFT_CONFIG_0_TX_FREQ_DIV; // 0 = divide by 2
config |= 6 << TDC1000_REG_SHIFT_CONFIG_0_NUM_TX; // 5 = 5 TX pulses
spiWriteReg8(TDC1000_REG_ADR_CONFIG_0, config);
// config = 0 << TDC1000_REG_SHIFT_CONFIG_1_NUM_AVG; // 0 = 1 measurement cycle
// config |= 0 << TDC1000_REG_SHIFT_CONFIG_1_NUM_RX; // 0 = do not count events
// spiWriteReg8(TDC1000_REG_ADR_CONFIG_1, config);
config = 0 << TDC1000_REG_SHIFT_CONFIG_2_VCOM_SEL; // 0 = internal voltage reference
config |= 0 << TDC1000_REG_SHIFT_CONFIG_2_MEAS_MODE; // 0 = TOF measurement
config |= 1 << TDC1000_REG_SHIFT_CONFIG_2_DAMPING; // 0 = disable damping
config |= 0 << TDC1000_REG_SHIFT_CONFIG_2_CH_SWP; // 0 = disable auto channel swap
config |= 0 << TDC1000_REG_SHIFT_CONFIG_2_EXT_CHSEL; // 0 = disable external channel swap
config |= 0 << TDC1000_REG_SHIFT_CONFIG_2_CH_SEL; // 0 = channel 1
config |= 2 << TDC1000_REG_SHIFT_CONFIG_2_TOF_MEAS_MODE; // 2 = mode 2
spiWriteReg8(TDC1000_REG_ADR_CONFIG_2, config);
// * The mode of the chip selects which transducers transmit and which
// * transducer receives the signal.
// * Mode 0 uses each transducer as both sender and receiver, and maps the
// * transmit1 channel with receive2, and transmit2 with receive1. In this
// * mode, Channel selection is what tells the chip which transducer channel
// * to use: ChSel = 0, transmit1; ChSel = 1, transmit2. In this mode,
// * the chip is used primarily for fluid level measurement.
// * Mode 1 also uses each transducer as both sender and receiver. This
// * mode varies with mode 0 by mapping the transmit1 channel with the
// * receive1 channel, and transmit2 with receive2. Otherwise it works
// * almost exactly like mode 0.
// * Mode 2 is different in that it is for fluid flow measurement. The
// * channels are mapped in the same way as mode 1 (TX1-RX1 & TX2-RX2), but
// * when a signal is transmitted on one channel, the chip will be listening
// * for the echo on the other channel. It can be thought of as sending
// * signals back-and-forth between the two transducers. Mode 2 allows for
// * automatic channel swapping: as soon as the signal goes one way, the
// * chip can automatically send it through the second channel in the other
// * direction. For automatic swapping, EXT_CHSEL needs to be off.
config = 0 << TDC1000_REG_SHIFT_CONFIG_3_TEMP_MODE;
config |= 0 << TDC1000_REG_SHIFT_CONFIG_3_TEMP_RTD_SEL;
config |= 0 << TDC1000_REG_SHIFT_CONFIG_3_TEMP_CLK_DIV;
config |= 0 << TDC1000_REG_SHIFT_CONFIG_3_BLANKING; // 0 = disable power blanking
// config |= 3 << TDC1000_REG_SHIFT_CONFIG_3_ECHO_QUAL_THLD; // 3 = -125mV Echo qualification DAC threshold level with respect to VCOM
config |= 1 << TDC1000_REG_SHIFT_CONFIG_3_ECHO_QUAL_THLD; // 3 = -125mV Echo qualification DAC threshold level with respect to VCOM
spiWriteReg8(TDC1000_REG_ADR_CONFIG_3, config);
config = 0 << TDC1000_REG_SHIFT_CONFIG_4_RECEIVE_MODE; // 0 = single echo
config |= 0 << TDC1000_REG_SHIFT_CONFIG_4_TRIG_EDGE_POLARITY; // 0 = rising
config |= 31 << TDC1000_REG_SHIFT_CONFIG_4_TX_PH_SHIFT_POS; // 2..31 for pulse, 31 = default
spiWriteReg8(TDC1000_REG_ADR_CONFIG_4, config);
// config = 0 << TDC1000_REG_SHIFT_TOF_1_PGA_GAIN; // 0 = 0dB gain
config = 7 << TDC1000_REG_SHIFT_TOF_1_PGA_GAIN; // 7 = 21dB gain
config |= 0 << TDC1000_REG_SHIFT_TOF_1_PGA_CTRL; // 0 = active
config |= 0 << TDC1000_REG_SHIFT_TOF_1_LNA_CTRL; // 0 = active
config |= 1 << TDC1000_REG_SHIFT_TOF_1_LNA_FB; // 1 = resistive
config |= 0 << TDC1000_REG_SHIFT_TOF_1_TIMING_REG;
spiWriteReg8(TDC1000_REG_ADR_TOF_1, config);
config = 0 << TDC1000_REG_SHIFT_TOF_0_TIMING_REG;
spiWriteReg8(TDC1000_REG_ADR_TOF_0, config);
config = 1 << TDC1000_REG_SHIFT_TIMEOUT_FORCE_SHORT_TOF;
config |= 3 << TDC1000_REG_SHIFT_TIMEOUT_SHORT_TOF_BLANK_PERIOD;
config |= 0 << TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT;
config |= 1 << TDC1000_REG_SHIFT_TIMEOUT_TOF_TIMEOUT_CTRL;
spiWriteReg8(TDC1000_REG_ADR_TIMEOUT, config);
config = 0 << TDC1000_REG_SHIFT_CLOCKIN_DIV;
config |= 0 << TDC1000_REG_SHIFT_AUTOZERO_PERIOD;
spiWriteReg8(TDC1000_REG_ADR_CLOCK_RATE, config);
return true;
}
*/
void TDC1000::dumpSettings(const uint32_t freqClkInHz)
{
uint8_t reg, v;
uint16_t v16;
reg = spiReadReg8(TDC1000_REG_ADR_CLOCK_RATE);
v = (reg >> TDC1000_REG_SHIFT_CLOCKIN_DIV) & TDC1000_REG_MASK_CLOCKIN_DIV;
// T0 = 1 / CLKIN/2^CLKIN_DIV, scaled by 1000000 for [us]
const float T0_us = 1000000.0 / (float(freqClkInHz) / float(TDC1000_REG_VAL_CLOCKIN_DIV(v)));
reg = spiReadReg8(TDC1000_REG_ADR_CONFIG_0);
v = (reg >> TDC1000_REG_SHIFT_CONFIG_0_TX_FREQ_DIV) & TDC1000_REG_MASK_CONFIG_0_TX_FREQ_DIV;
// T1 = 1 / CLKIN/2^(TX_FREQ_DIV+1), scaled by 1000000 for [us]
const float f1 = float(freqClkInHz) / float(TDC7200_REG_VAL_CONFIG_0_TX_FREQ_DIV(v));
const float T1_us = 1000000.0 / f1;
Serial.print(F("T0:\t\t\t\t")); Serial.print(T0_us); Serial.println(F(" us"));
Serial.print(F("T1:\t\t\t\t")); Serial.print(T1_us); Serial.println(F(" us"));
Serial.print(F("TX_CLOCK:\t\t\t")); Serial.print(f1); Serial.println(F(" Hz"));
Serial.println(F("CONFIG_0"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = (reg >> TDC1000_REG_SHIFT_CONFIG_0_TX_FREQ_DIV) & TDC1000_REG_MASK_CONFIG_0_TX_FREQ_DIV;
Serial.print(F("\tTX_FREQ_DIV:\t\t")); Serial.println(TDC7200_REG_VAL_CONFIG_0_TX_FREQ_DIV(v));
v = TDC7200_REG_VAL_CONFIG_0_NUM_TX(reg >> TDC1000_REG_SHIFT_CONFIG_0_NUM_TX) & TDC1000_REG_MASK_CONFIG_0_NUM_TX;
const uint8_t numTx = v;
Serial.print(F("\tNUM_TX:\t\t\t")); Serial.println(v);
reg = spiReadReg8(TDC1000_REG_ADR_CONFIG_1);
Serial.println(F("CONFIG_1"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = (reg >> TDC1000_REG_SHIFT_CONFIG_1_NUM_AVG) & TDC1000_REG_MASK_CONFIG_1_NUM_AVG;
Serial.print(F("\tNUM_AVG:\t\t")); Serial.println(TDC7200_REG_VAL_CONFIG_1_NUM_AVG(v));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_1_NUM_RX) & TDC1000_REG_MASK_CONFIG_1_NUM_RX;
Serial.print(F("\tNUM_RX:\t\t\t")); Serial.println(TDC7200_REG_VAL_CONFIG_1_NUM_RX(v));
reg = spiReadReg8(TDC1000_REG_ADR_CONFIG_2);
Serial.println(F("CONFIG_2"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = (reg >> TDC1000_REG_SHIFT_CONFIG_2_VCOM_SEL) & 1u;
Serial.print(F("\tVCOM_SEL:\t\t")); Serial.println(v ? F("EXT") : F("INT"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_2_MEAS_MODE) & 1u;
Serial.print(F("\tMEAS_MODE:\t\t")); Serial.println(v ? F("TEMP") : F("TOF"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_2_DAMPING) & 1u;
Serial.print(F("\tDAMPING:\t\t")); Serial.println(v ? F("ON") : F("OFF"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_2_CH_SWP) & 1u;
Serial.print(F("\tCH_SWP:\t\t\t")); Serial.println(v ? F("ON") : F("OFF"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_2_EXT_CHSEL) & 1u;
Serial.print(F("\tEXT_CHSEL:\t\t")); Serial.println(v ? F("ON") : F("OFF"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_2_CH_SEL) & 1u;
Serial.print(F("\tCH_SEL:\t\t\t")); Serial.println(TDC1000_REG_VAL_CONFIG_2_CH_SEL(v));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_2_TOF_MEAS_MODE) & TDC1000_REG_MASK_CONFIG_2_TOF_MEAS_MODE;
Serial.print(F("\tTOF_MEAS_MODE:\t\t")); Serial.println(TDC7200_REG_VAL_CONFIG_2_TOF_MEAS_MODE(v));
reg = spiReadReg8(TDC1000_REG_ADR_CONFIG_3);
Serial.println(F("CONFIG_3"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = (reg >> TDC1000_REG_SHIFT_CONFIG_3_TEMP_MODE) & 1u;
Serial.print(F("\tTEMP_MODE:\t\t")); Serial.println(v ? F("REF, RTD1") : F("REF, RTD1, RTD2"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_3_TEMP_RTD_SEL) & 1u;
Serial.print(F("\tTEMP_RTD_SEL:\t\t")); Serial.println(v ? F("PT500") : F("PT1000"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_3_TEMP_CLK_DIV) & 1u;
Serial.print(F("\tTEMP_CLK_DIV:\t\t")); Serial.println(v ? F("TX_FREQ_DIV") : F("8"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_3_BLANKING) & 1u;
const bool blanking = v;
Serial.print(F("\tBLANKING:\t\t")); Serial.println(v ? F("ON") : F("OFF"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_3_ECHO_QUAL_THLD) & TDC1000_REG_MASK_CONFIG_3_ECHO_QUAL_THLD;
int16_t th;
switch(v)
{
case 0: th = -35; break;
case 1: th = -50; break;
case 2: th = -75; break;
case 3: th = -125; break;
case 4: th = -220; break;
case 5: th = -410; break;
case 6: th = -775; break;
default: th = -1500; break;
}
Serial.print(F("\tECHO_QUAL_THLD:\t\t")); Serial.print(th); Serial.println(F(" mV"));
reg = spiReadReg8(TDC1000_REG_ADR_CONFIG_4);
Serial.println(F("CONFIG_4"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = (reg >> TDC1000_REG_SHIFT_CONFIG_4_RECEIVE_MODE) & 1u;
Serial.print(F("\tRECEIVE_MODE:\t\t")); Serial.println(v ? F("MULTI ECHO") : F("SINGLE ECHO"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_4_TRIG_EDGE_POLARITY) & 1u;
Serial.print(F("\tTRIG_EDGE_POLARITY:\t")); Serial.println(v ? F("FALLING") : F("RISING"));
v = (reg >> TDC1000_REG_SHIFT_CONFIG_4_TX_PH_SHIFT_POS) & TDC1000_REG_MASK_CONFIG_4_TX_PH_SHIFT_POS;
Serial.print(F("\tTX_PH_SHIFT_POS:\t")); Serial.println(TDC1000_REG_VAL_CONFIG_4_TX_PH_SHIFT_POS(v));
reg = spiReadReg8(TDC1000_REG_ADR_TOF_1);
Serial.println(F("TOF_1"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = (reg >> TDC1000_REG_SHIFT_TOF_1_PGA_GAIN) & TDC1000_REG_MASK_TOF_1_PGA_GAIN;
Serial.print(F("\tPGA_GAIN:\t\t")); Serial.print(TDC1000_REG_VAL_TOF_1_PGA_GAIN(v)); Serial.println(F(" dB"));
v = (reg >> TDC1000_REG_SHIFT_TOF_1_PGA_CTRL) & 1u;
Serial.print(F("\tPGA_CTRL:\t\t")); Serial.println(v ? F("OFF") : F("ON"));
v = (reg >> TDC1000_REG_SHIFT_TOF_1_LNA_CTRL) & 1u;
Serial.print(F("\tLNA_CTRL:\t\t")); Serial.println(v ? F("OFF") : F("ON"));
v = (reg >> TDC1000_REG_SHIFT_TOF_1_LNA_FB) & 1u;
Serial.print(F("\tLNA_FB:\t\t\t")); Serial.println(v ? F("RESISTIVE") : F("CAPACITIVE"));
v = (reg >> TDC1000_REG_SHIFT_TOF_1_TIMING_REG) & TDC1000_REG_MASK_TOF_1_TIMING_REG;
Serial.print(F("\tTIMING_REG[9:8]:\t")); Serial.println(v);
v16 = v << 8;
reg = spiReadReg8(TDC1000_REG_ADR_TOF_0);
Serial.println(F("TOF_0"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v16 |= reg;
Serial.print(F("\tTIMING_REG[9:0]:\t")); Serial.println(v16);
bool shortTOF = v16 < 30;
const float tWait_us = (float(v16) - 30.0) * 8.0 * T0_us;
reg = spiReadReg8(TDC1000_REG_ADR_ERROR_FLAGS);
Serial.println(F("ERROR_FLAGS"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = (reg >> TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_SIG_WEAK) & 1u;
Serial.print(F("\tERR_SIG_WEAK:\t\t")); Serial.println(v);
v = (reg >> TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_NO_SIG) & 1u;
Serial.print(F("\tERR_NO_SIG:\t\t")); Serial.println(v);
v = (reg >> TDC1000_REG_SHIFT_ERROR_FLAGS_ERR_SIG_HIGH) & 1u;
Serial.print(F("\tERR_SIG_HIGH:\t\t")); Serial.println(v);
reg = spiReadReg8(TDC1000_REG_ADR_TIMEOUT);
Serial.println(F("TIMEOUT"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = (reg >> TDC1000_REG_SHIFT_TIMEOUT_FORCE_SHORT_TOF) & 1u;
shortTOF |= v;
Serial.print(F("\tFORCE_SHORT_TOF:\t")); Serial.println(v ? F("ON") : F("OFF"));
v16 = TDC1000_REG_VAL_TIMEOUT_SHORT_TOF_BLANK_PERIOD( (reg >> TDC1000_REG_SHIFT_TIMEOUT_SHORT_TOF_BLANK_PERIOD) & TDC1000_REG_MASK_TIMEOUT_SHORT_TOF_BLANK_PERIOD );
const float tMask_us = float(v16) * T0_us;
Serial.print(F("\tSHORT_TOF_BLANK_PERIOD:\t")); Serial.print(v16); Serial.print(F(" x T0 -> ")); Serial.print(tMask_us); Serial.println(F(" us"));
v = (reg >> TDC1000_REG_SHIFT_TIMEOUT_ECHO_TIMEOUT) & 1u;
Serial.print(F("\tECHO_TIMEOUT:\t\t")); Serial.println(v ? F("OFF") : F("ON"));
v16 = TDC1000_REG_VAL_TIMEOUT_TOF_TIMEOUT_CTRL( (reg >> TDC1000_REG_SHIFT_TIMEOUT_TOF_TIMEOUT_CTRL) & TDC1000_REG_MASK_TIMEOUT_TOF_TIMEOUT_CTRL );
const float tEchoListen_us = float(v16) * T0_us;
Serial.print(F("\tTOF_TIMEOUT_CTRL:\t")); Serial.print(v16); Serial.print(F(" x T0 -> ")); Serial.print(tEchoListen_us); Serial.println(F(" us"));
reg = spiReadReg8(TDC1000_REG_ADR_CLOCK_RATE);
Serial.println(F("CLOCK_RATE"));
Serial.print(F("\tRAW:\t\t\t0x")); Serial.println(reg, HEX);
v = TDC1000_REG_VAL_CLOCKIN_DIV( (reg >> TDC1000_REG_SHIFT_CLOCKIN_DIV) & 1u);
Serial.print(F("\tCLOCKIN_DIV:\t\t")); Serial.println(v);
v16 = TDC1000_REG_VAL_AUTOZERO_PERIOD( (reg >> TDC1000_REG_SHIFT_AUTOZERO_PERIOD) & 1u);
const float tAutozero_us = float(v16) * T0_us;
Serial.print(F("\tAUTOZERO_PERIOD:\t")); Serial.print(v16); Serial.print(F(" x T0 -> ")); Serial.print(tAutozero_us); Serial.println(F(" us"));
Serial.print(F("TOF Control:\t\t\t"));
const float tCommonMode_us = 128 * T0_us;
const float tTransmit_us = float(numTx) * T1_us;
if (shortTOF)
{
Serial.println(F("Short TOF"));
}
else
{
Serial.println(F("Standard TOF"));
if (blanking)
{
Serial.println(F(" with blanking"));
}
}
if (not shortTOF) { Serial.print(F("Transmit:\t\t\t")); Serial.print(tTransmit_us); Serial.println(F(" us")); }
if (blanking) { Serial.print(F("Wait:\t\t\t\t")); Serial.print(tWait_us); Serial.println(F(" us")); }
Serial.print(F("Common-mode:\t\t\t")); Serial.print(tCommonMode_us); Serial.println(F(" us"));
Serial.print(F("Autozero:\t\t\t")); Serial.print(tAutozero_us); Serial.println(F(" us"));
if (shortTOF)
{
Serial.print(F("Transmit:\t\t\t")); Serial.print(tTransmit_us); Serial.println(F(" us"));
Serial.print(F("Mask/Blank:\t\t\t")); Serial.print(tMask_us); Serial.println(F(" us"));
}
else if (not blanking)
{
Serial.print(F("Wait/Echo listen:\t\t\t")); Serial.print(tWait_us); Serial.println(F(" us"));
}
Serial.print(F("Echo listen:\t\t\t")); Serial.print(tEchoListen_us); Serial.println(F(" us"));
Serial.print(F("End:\t\t\t\t")); Serial.print(T1_us); Serial.println(F(" us"));
}
uint8_t TDC1000::spiReadReg8(const uint8_t addr)
{
SPI.beginTransaction(SPISettings(TDC1000_SPI_CLK_MAX, TDC1000_SPI_ORDER, TDC1000_SPI_MODE));
digitalWrite(m_pinCs, LOW);
SPI.transfer((addr & TDC1000_SPI_REG_ADDR_MASK) | TDC1000_SPI_REG_READ);
uint8_t val = SPI.transfer(0u);
digitalWrite(m_pinCs, HIGH);
SPI.endTransaction();
return val;
}
void TDC1000::spiWriteReg8(const uint8_t addr, const uint8_t val)
{
SPI.beginTransaction(SPISettings(TDC1000_SPI_CLK_MAX, TDC1000_SPI_ORDER, TDC1000_SPI_MODE));
digitalWrite(m_pinCs, LOW);
(void)SPI.transfer16((((addr & TDC1000_SPI_REG_ADDR_MASK) | TDC1000_SPI_REG_WRITE) << 8) | val);
digitalWrite(m_pinCs, HIGH);
SPI.endTransaction();
}
void TDC1000::spiRmwReg8(const uint8_t adr, const uint8_t clr, const uint8_t set)
{
uint8_t val = spiReadReg8(adr);
val &= ~clr;
val |= set;
spiWriteReg8(adr, val);
}