-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
357 lines (296 loc) · 14.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from __future__ import print_function
import numpy as np
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.nn.parallel import DistributedDataParallel as DDP
from models import *
from dataset import NMNIST
from utils import choose_model
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2, 3"
from tensorboardX import SummaryWriter
quantized_layers = []
def quantize_tensor(tensor,bitwidth,channel_level=False):
if channel_level:
_max = tensor.abs().view(tensor.size(0),-1).max(1)[0]
else:
_max = tensor.abs().max()
scale = (2 ** (bitwidth - 1) - 1) / _max
if tensor.dim() == 4:
scale = scale.view(-1, 1, 1, 1)
else:
scale = scale.view(-1, 1)
#new_tensor = torch.round(scale * tensor)
new_tensor = scale * tensor
new_tensor = (new_tensor.round() - new_tensor).detach() + new_tensor
return new_tensor, scale
def init_quantize_net(net):
for name,m in net.named_modules():
if isinstance(m,nn.Conv2d) or isinstance(m,nn.Linear):
quantized_layers.append(m)
m.weight.weight_float = m.weight.data.clone()
def quantize_layers(bitwidth,rescale=True):
for i, layer in enumerate(quantized_layers):
with torch.no_grad():
quantized_w, scale_w=quantize_tensor(layer.weight.weight_float,bitwidth,False)
layer.weight[...]= quantized_w/scale_w if rescale else quantized_w
class QuantSGD(torch.optim.SGD):
"""
refactor torch.optim.SGD.step()
For supporting the STE(Straight Through Estimator)
"""
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if hasattr(p, 'weight_float'):
weight_data = p.weight_float
else:
weight_data = p.data
if p.grad is None:
continue
# STE approximate function
d_p = p.grad.data
if weight_decay != 0:
# TODO: Explore the weight_decay
d_p.add_(weight_decay, weight_data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
weight_data.add_(-group['lr'], d_p)
return loss
def weightsdistribute(model):
print("================show every layer's weights distribute================")
for key, value in model.named_parameters():
print("================="+key+"=================")
unique, count = torch.unique(value.detach(), sorted=True, return_counts= True)
print(unique.shape)
def train(args, model, device, train_loader, optimizer, epoch, writer):
model.train()
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# necessary for general dataset: broadcast input
data, _ = torch.broadcast_tensors(data, torch.zeros((args.timestep,) + data.shape))
data = data.permute(1, 2, 3, 4, 0)
output = model(data)
loss = F.cross_entropy(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if args.quantize:
quantize_layers(args.bit)
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
total += target.size(0)
correct += pred.eq(target.view_as(pred)).sum().item()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)], Loss: {:.6f}, Acc: {}/{} ({:.2f}%)'.format(
epoch, batch_idx * len(data / args.timestep), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item(),
correct, total, 100. * correct / total))
if args.loss_writer:
writer.add_scalar('Train Loss /batchidx', loss, batch_idx + len(train_loader) * epoch)
best_acc = 0
def test(args, model, device, test_loader, epoch, writer):
global best_acc
model.eval()
test_loss = 0
correct = 0
isEval = False
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
data, _ = torch.broadcast_tensors(data, torch.zeros((args.timestep,) + data.shape))
data = data.permute(1, 2, 3, 4, 0)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
acc = 100. * correct / len(test_loader.dataset)
if args.loss_writer:
writer.add_scalar('Test Loss /epoch', test_loss, epoch)
writer.add_scalar('Test Acc /epoch', acc, epoch)
for i, (name, param) in enumerate(model.named_parameters()):
if '_s' in name:
writer.add_histogram(name, param, epoch)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), acc))
if acc > best_acc:
if isinstance(model, nn.parallel.DistributedDataParallel):
state = {
'model': model.module.state_dict(),
'acc': acc,
'epoch': epoch,
}
else:
print("no")
state = {
'model': model.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('ckpt'):
os.mkdir('ckpt')
if args.quantize:
torch.save(state, './ckpt/' + args.model + '_ckpt_q.pth')
print('Saved in ./ckpt/' + args.model + '_ckpt_q.pth\n')
else:
torch.save(state, './ckpt/' + args.model + '_ckpt.pth')
print('Saved in ./ckpt/' + args.model + '_ckpt.pth\n')
best_acc = acc
def adjust_learning_rate(args, optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 20 epochs"""
lr = args.lr * (0.1 ** (epoch // 35))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('model', type=str,
help='network model type: see detail in folder ''models'' ')
parser.add_argument('--dataset', type=str, default='MNIST',
help='dataset for model to train')
parser.add_argument('--batch_size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test_batch_size', type=int, default=100, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate (default: 1e-3)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--resume', action='store_true', default=False,
help='continue the train')
parser.add_argument('--loss_writer', '-lw', action='store_true', default=False,
help='For plot Tensorboard and see loss')
parser.add_argument('--timestep', '-t', type=int, default=2,
help='parameter timestep of LIF neuron')
parser.add_argument('--Vth', '-v', type=int, default=0.4,
help='parameter Vth of LIF neuron')
parser.add_argument('--tau', '-ta', type=int, default=0.25,
help='parameter leaky tau of LIF neuron')
parser.add_argument('--quantize', '-q', action='store_true', default=False,
help='QAT for snn')
parser.add_argument('--bit', '-b', type=int, default=8,
help='bit num to quantize')
parser.add_argument("--parallel", '-p', default = None ,type=str,
help='choose DP or DDP')
parser.add_argument("--local_rank", type=int,
help='When there is a host slave situation in DDP,\
the host is local_ rank = 0')
args = parser.parse_args()
config_snn_param(args)
#print(get_snn_param())
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if device == 'cuda' else {}
if args.loss_writer:
writer = SummaryWriter('./summaries/' + args.model + "/")
else:
writer = None
if args.dataset == "MNIST":
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.1307], std=[0.3081])
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.1307], std=[0.3081])
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
if args.dataset == "CIFAR10":
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
if args.dataset == "CIFAR100":
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = choose_model(args)
model = model.to(device)
start_epoch = 0
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('ckpt'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./ckpt/' + args.model + '_ckpt.pth')
model.load_state_dict(checkpoint['model'])
if not args.quantize:
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
if device == 'cuda' and torch.cuda.device_count() > 1 and args.parallel == 'DDP':
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', rank=0, world_size=1)
model = DDP(model, find_unused_parameters=True)
if args.quantize:
print("========== quantize =============")
init_quantize_net(model)
quantize_layers(args.bit)
# assert False
optimizer = QuantSGD(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
for epoch in range(start_epoch, start_epoch + args.epochs):
train(args, model, device, train_loader, optimizer, epoch, writer)
test(args, model, device, test_loader, epoch, writer)
#weightsdistribute(model)
if args.loss_writer:
writer.close()
if __name__ == '__main__':
main()