-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathengine.py
325 lines (281 loc) · 14.9 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import sys
import math
import random
import itertools
from typing import Iterable
import torch
import util.misc as utils
from datasets.eval_detection import DetectionEvaluator
from datasets import (coco_base_class_ids, coco_novel_class_ids, \
voc_base1_class_ids, voc_novel1_class_ids, \
voc_base2_class_ids, voc_novel2_class_ids, \
voc_base3_class_ids, voc_novel3_class_ids)
@torch.no_grad()
def sample_support_categories(args, targets, support_images, support_class_ids, support_targets):
"""
This function is used during training. It does the followings:
1. Samples the support categories (total num: args.total_num_support; maximum positive num: args.max_pos_support)
(Insufficient positive support categories will be replaced with negative support categories.)
2. Filters ground truths of the query images.
We only keep ground truths whose labels are sampled as support categories.
3. Samples and pre-processes support_images, support_class_ids, and support_targets.
"""
support_images = list(itertools.chain(*support_images))
support_class_ids = torch.cat(support_class_ids, dim=0).tolist()
support_targets = list(itertools.chain(*support_targets))
positive_labels = torch.cat([target['labels'] for target in targets], dim=0).unique()
num_positive_labels = positive_labels.shape[0]
positive_labels_list = positive_labels.tolist()
negative_labels_list = list(set(support_class_ids) - set(positive_labels_list))
num_negative_labels = len(negative_labels_list)
positive_label_indexes = [i for i in list(range(len(support_images))) if support_class_ids[i] in positive_labels_list]
negative_label_indexes = [i for i in list(range(len(support_images))) if support_class_ids[i] in negative_labels_list]
meta_support_images, meta_support_class_ids, meta_support_targets = list(), list(), list()
for _ in range(args.episode_num):
NUM_POS = random.randint(max(0, args.episode_size - num_negative_labels),
min(num_positive_labels, args.episode_size))
NUM_NEG = args.episode_size - NUM_POS
# Sample positive support classes: make sure in every episode, there is no repeated category
while True:
pos_support_indexes = random.sample(positive_label_indexes, NUM_POS)
if NUM_POS == len(set([support_class_ids[i] for i in pos_support_indexes])):
break
# Sample negative support classes: try our best to ensure in every episode there is no repeated category
num_trial = 0
while num_trial < 50:
neg_support_indexes = random.sample(negative_label_indexes, NUM_NEG)
if NUM_NEG == len(set([support_class_ids[i] for i in neg_support_indexes])):
break
else:
num_trial += 1
support_indexes = pos_support_indexes + neg_support_indexes
random.shuffle(support_indexes)
selected_support_images = [support_images[i] for i in support_indexes]
selected_support_class_ids = [support_class_ids[i] for i in support_indexes]
selected_support_targets = [support_targets[i] for i in support_indexes]
meta_support_images += selected_support_images
meta_support_class_ids += selected_support_class_ids
meta_support_targets += selected_support_targets
meta_support_images = utils.nested_tensor_from_tensor_list(meta_support_images)
meta_support_class_ids = torch.tensor(meta_support_class_ids)
return targets, meta_support_images, meta_support_class_ids, meta_support_targets
def train_one_epoch(args,
model: torch.nn.Module,
criterion: torch.nn.Module,
dataloader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
max_norm: float = 0):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
metric_logger.add_meter('grad_norm', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 50
for samples, targets, support_images, support_class_ids, support_targets in metric_logger.log_every(dataloader, print_freq, header):
# * Sample Support Categories;
# * Filters Targets (only keep GTs within support categories);
# * Samples Support Images and Targets
targets, support_images, support_class_ids, support_targets = \
sample_support_categories(args, targets, support_images, support_class_ids, support_targets)
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
support_images = support_images.to(device)
support_class_ids = support_class_ids.to(device)
support_targets = [{k: v.to(device) for k, v in t.items()} for t in support_targets]
outputs = model(samples, targets=targets, supp_samples=support_images, supp_class_ids=support_class_ids, supp_targets=support_targets)
loss_dict = criterion(outputs)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is NaN - {}. \nTraining terminated unexpectedly.\n".format(loss_value))
print("loss dict:")
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
else:
grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
optimizer.step()
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(grad_norm=grad_total_norm)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
del support_images
del support_class_ids
del support_targets
del samples
del targets
del outputs
del weight_dict
del grad_total_norm
del loss_value
del losses
del loss_dict
del loss_dict_reduced
del loss_dict_reduced_scaled
del loss_dict_reduced_unscaled
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(args, model, criterion, postprocessors, dataloader, support_data_loader, base_ds, device, type='all'):
model.eval()
criterion.eval()
# First: Obtain Category Codes for All Categories to Detect
support_iter = iter(support_data_loader)
all_category_codes_final = []
print("Extracting support category codes...")
number_of_supports = 100 # This is the number of support images to use for each category. Need be large enough.
for i in range(number_of_supports):
try:
support_images, support_class_ids, support_targets = next(support_iter)
except:
support_iter = iter(support_data_loader)
support_images, support_class_ids, support_targets = next(support_iter)
support_images = [support_image.squeeze(0) for support_image in support_images]
support_class_ids = support_class_ids.squeeze(0).to(device)
support_targets = [{k: v.squeeze(0) for k, v in t.items()} for t in support_targets]
num_classes = support_class_ids.shape[0]
num_episode = math.ceil(num_classes / args.episode_size)
category_codes_final = []
support_class_ids_final = []
for i in range(num_episode):
if (args.episode_size * (i + 1)) <= num_classes:
support_images_ = utils.nested_tensor_from_tensor_list(
support_images[(args.episode_size * i): (args.episode_size * (i + 1))]
).to(device)
support_targets_ = [
{k: v.to(device) for k, v in t.items()} for t in support_targets[(args.episode_size * i): (args.episode_size * (i + 1))]
]
support_class_ids_ = support_class_ids[(args.episode_size * i): (args.episode_size* (i + 1))]
else:
support_images_ = utils.nested_tensor_from_tensor_list(
support_images[-args.episode_size:]
).to(device)
support_targets_ = [
{k: v.to(device) for k, v in t.items()} for t in support_targets[-args.episode_size:]
]
support_class_ids_ = support_class_ids[-args.episode_size:]
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
category_code = model.module.compute_category_codes(support_images_, support_targets_)
else:
category_code = model.compute_category_codes(support_images_, support_targets_)
category_code = torch.stack(category_code, dim=0) # (num_enc_layer, args.total_num_support, d)
category_codes_final.append(category_code)
support_class_ids_final.append(support_class_ids_)
support_class_ids_final = torch.cat(support_class_ids_final, dim=0)
category_codes_final = torch.cat(category_codes_final, dim=1) # (num_enc_layer, num_episode x args.total_num_support, d)
all_category_codes_final.append(category_codes_final)
if args.num_feature_levels == 1:
all_category_codes_final = torch.stack(all_category_codes_final, dim=0) # (number_of_supports, num_enc_layer, num_episode x args.total_num_support, d)
all_category_codes_final = torch.mean(all_category_codes_final, 0, keepdims=False)
all_category_codes_final = list(torch.unbind(all_category_codes_final, dim=0))
elif args.num_feature_levels == 4:
raise NotImplementedError
else:
raise NotImplementedError
print("Completed extracting category codes. Start Inference...")
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
header = 'Test:'
iou_types = tuple(k for k in ('bbox',) if k in postprocessors.keys())
evaluator = DetectionEvaluator(base_ds, iou_types)
if type == 'all':
pass # To evaluate all categories, no need to change params of the evaluator
elif type == 'base':
if args.dataset_file == 'coco_base':
evaluator.coco_eval['bbox'].params.catIds = coco_base_class_ids
elif args.dataset_file == 'voc_base1':
evaluator.coco_eval['bbox'].params.catIds = voc_base1_class_ids
elif args.dataset_file == 'voc_base2':
evaluator.coco_eval['bbox'].params.catIds = voc_base2_class_ids
elif args.dataset_file == 'voc_base3':
evaluator.coco_eval['bbox'].params.catIds = voc_base3_class_ids
else:
raise ValueError
elif type == 'novel':
if args.dataset_file == 'coco_base' or args.dataset_file == 'coco':
evaluator.coco_eval['bbox'].params.catIds = coco_novel_class_ids
elif args.dataset_file == 'voc_base1':
evaluator.coco_eval['bbox'].params.catIds = voc_novel1_class_ids
elif args.dataset_file == 'voc_base2':
evaluator.coco_eval['bbox'].params.catIds = voc_novel2_class_ids
elif args.dataset_file == 'voc_base3':
evaluator.coco_eval['bbox'].params.catIds = voc_novel3_class_ids
else:
raise ValueError
else:
raise ValueError("Type must be 'all', 'base' or 'novel'!")
print_freq = 50
for samples, targets in metric_logger.log_every(dataloader, print_freq, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples, targets=targets, supp_class_ids=support_class_ids_final, category_codes=all_category_codes_final)
loss_dict = criterion(outputs)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict}
loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()}
metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled)
metric_logger.update(class_error=loss_dict_reduced['class_error'])
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors['bbox'](outputs, orig_target_sizes)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
if evaluator is not None:
evaluator.update(res)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if evaluator is not None:
evaluator.synchronize_between_processes()
# accumulate predictions from all images
if evaluator is not None:
if type == 'all':
print("\n\n\n\n * ALL Categories:")
elif type == 'base':
print("\n\n\n\n * Base Categories:")
elif type == 'novel':
print("\n\n\n\n * Novel Categories:")
else:
raise ValueError("Type must be 'all', 'base' or 'novel'!")
evaluator.accumulate()
evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if evaluator is not None:
if 'bbox' in postprocessors.keys():
stats['coco_eval_bbox'] = evaluator.coco_eval['bbox'].stats.tolist()
del support_images
del support_class_ids
del support_targets
del samples
del targets
del outputs
del weight_dict
del loss_dict
del loss_dict_reduced
del loss_dict_reduced_scaled
del loss_dict_reduced_unscaled
del category_code
del category_codes_final
del all_category_codes_final
del orig_target_sizes
del res
del results
torch.cuda.empty_cache()
return stats, evaluator