-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
255 lines (196 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import argparse
import random
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.utils as vutils
from torch.autograd import Variable
from tqdm import tqdm
from model import PSGANGenerator as Generator
from model import PSGANDiscriminator as Discriminator
import dataset_setting
from data_loader import get_loader
from train_logger import TrainLogger
torch.backends.cudnn.benchmark = True
def save_image(imgs, output_dir="log", img_name="output", img_ext=".png"):
vutils.save_image(imgs.data, "{}".format(os.path.join(output_dir, img_name+img_ext)))
def train(args):
def to_var(x, volatile=False, requires_grad=False):
if torch.cuda.is_available() and not args.nogpu:
x = x.cuda(args.gpu_device_num)
return Variable(x, volatile=volatile, requires_grad=requires_grad)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print("\nsaving at {}\n".format(args.save_dir))
print("initializing...")
# if args.layer_num is 5 and args.base_conv_channel is 64 then
# gen_layer: [Z_dim, 512, 256, 128, 64, 3]
# dis_layer: [ 3, 64, 128, 256, 512, 1]
gen_layers = [args.zl_dim+args.zg_dim+args.zp_dim]+[args.base_conv_channel*(2**(args.layer_num-n)) for n in range(2, args.layer_num+1)]+[3]
dis_layers = [3]+[args.base_conv_channel*(2**n) for n in range(args.layer_num-1)]+[1]
print("generator channels: ", gen_layers)
print("discriminator channels: ", dis_layers)
if torch.cuda.is_available() and not args.nogpu:
generator = Generator(conv_channels=gen_layers,
kernel_size=args.kernel_size,
local_noise_dim=args.zl_dim,
global_noise_dim=args.zg_dim,
periodic_noise_dim=args.zp_dim,
spatial_size=args.spatial_size,
hidden_noise_dim=args.mlp_hidden_dim).cuda(args.gpu_device_num)
discriminator = Discriminator(conv_channels=dis_layers, kernel_size=args.kernel_size).cuda(args.gpu_device_num)
else:
generator = Generator(conv_channels=gen_layers,
kernel_size=args.kernel_size,
local_noise_dim=args.zl_dim,
global_noise_dim=args.zg_dim,
periodic_noise_dim=args.zp_dim,
spatial_size=args.spatial_size,
hidden_noise_dim=args.mlp_hidden_dim)
discriminator = Discriminator(conv_channels=dis_layers, kernel_size=args.kernel_size)
if args.show_parameters:
for idx, m in enumerate(model.modules()):
print(idx, '->', m)
print(args)
# training setting
if args.sgd:
generator_optimizer = torch.optim.SGD(generator.parameters(), lr=args.learning_rate_g, momentum=0.9, weight_decay=1e-8)
discriminator_optimizer = torch.optim.SGD(discriminator.parameters(), lr=args.learning_rate_g, momentum=0.9, weight_decay=1e-8)
else:
generator_optimizer = torch.optim.Adam(generator.parameters(), lr=args.learning_rate_d, weight_decay=1e-8, betas=(args.adam_beta, 0.999))
discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=args.learning_rate_d, weight_decay=1e-8, betas=(args.adam_beta, 0.999))
# for cropping size
img_size = args.spatial_size*(2**args.layer_num)
train_loader = get_loader(data_set=dataset_setting.get_dtd_train_loader(args, img_size),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers)
# for loggin the trainning
tlog = TrainLogger("train_log", log_dir=args.save_dir, csv=True, header=True, suppress_err=False)
tlog.disable_pickle_object()
tlog.set_default_Keys(["epoch", "total_loss", "discriminator_loss", "generator_loss"])
# output from discriminator is [0,1] of each patch, exsisting spatial_size*spatial_size number.
true_label = torch.ones(args.batch_size, args.spatial_size*args.spatial_size)
fake_label = torch.zeros(args.batch_size, args.spatial_size*args.spatial_size)
# for fixed sampling
fixed_noise = to_var(generator.generate_noise(batch_size=8,
local_dim=args.zl_dim,
global_dim=args.zg_dim,
periodic_dim=args.zp_dim,
spatial_size=args.spatial_size,
tile=args.tile),
volatile=False)
epochs = tqdm(range(args.epochs), ncols=100, desc="train")
for epoch in epochs:
# for logging
epoch_total_loss = 0.0
epoch_total_dloss = 0.0
epoch_total_gloss = 0.0
if (epoch+1) % args.decay_every == 0 and args.sgd:
for param_group in generator_optimizer.param_groups:
param_group['lr'] *= args.decay_value
for param_group in discriminator_optimizer.param_groups:
param_group['lr'] *= args.decay_value
tqdm.write("decayed learning rate, factor {}".format(args.decay_value))
_train_loader = tqdm(train_loader, ncols=100)
for images in _train_loader:
batch_size = images.shape[0]
imgs = to_var(images, volatile=False)
true_labels = to_var(true_label[:batch_size], volatile=False)
fake_labels = to_var(fake_label[:batch_size], volatile=False)
noise = to_var(generator.generate_noise(batch_size=batch_size,
local_dim=args.zl_dim,
global_dim=args.zg_dim,
periodic_dim=args.zp_dim,
spatial_size=args.spatial_size,
tile=args.tile))
# generate fake image
fake_img = generator(noise)
# train discriminator ################################################################
discriminator_optimizer.zero_grad()
######## train discriminator with real image
discriminator_pred = discriminator(imgs)
discriminator_true_loss = F.binary_cross_entropy(discriminator_pred, true_labels)
epoch_total_loss += discriminator_true_loss.item()
epoch_total_dloss += discriminator_true_loss.item()
discriminator_true_loss.backward()
######## train discriminator with fake image
discriminator_pred = discriminator(fake_img.detach())
discriminator_fake_loss = F.binary_cross_entropy(discriminator_pred, fake_labels)
epoch_total_loss += discriminator_fake_loss.item()
epoch_total_dloss += discriminator_fake_loss.item()
discriminator_fake_loss.backward()
discriminator_optimizer.step()
# train generator ####################################################################
generator_optimizer.zero_grad()
fake_discriminate = discriminator(fake_img)
generator_loss = F.binary_cross_entropy(fake_discriminate, true_labels)
epoch_total_loss += generator_loss.item()
epoch_total_gloss += generator_loss.item()
generator_loss.backward()
generator_optimizer.step()
_train_loader.set_description("train[{}] dloss: {:.5f}, gloss: {:.5f}"
.format(args.save_dir, epoch_total_dloss, epoch_total_gloss))
if (epoch+1) % args.save_sample_every == 0:
generator.eval()
# generate fake image
fake_img = generator(fixed_noise)
save_image(fake_img.mul(0.5).add(0.5).cpu(), output_dir=args.save_dir, img_name="sample_e{}".format(epoch+1))
generator.train()
tqdm.write("[#{}]train epoch dloss: {:.5f}, gloss: {:.5f}"
.format(epoch+1, epoch_total_dloss, epoch_total_gloss))
tlog.log([epoch+1, float(epoch_total_loss), float(epoch_total_dloss), float(epoch_total_gloss)])
# save model
if (epoch+1) % args.save_model_every == 0:
generator_state = {'epoch': epoch + 1,
'optimizer_state_dict' : generator_optimizer.state_dict()}
discriminator_state = {'epoch': epoch + 1,
'optimizer_state_dict' : discriminator_optimizer.state_dict()}
generator.save(add_state=generator_state, file_name=os.path.join(args.save_dir,'generator_param_epoch{}.pth'.format(epoch+1)))
discriminator.save(add_state=discriminator_state, file_name=os.path.join(args.save_dir,'discriminator_param_epoch{}.pth'.format(epoch+1)))
tqdm.write("model saved.")
# saving training result
generator.save(add_state={'optimizer_state_dict' : generator_optimizer.state_dict()},
file_name=os.path.join(args.save_dir,'generator_param_fin_{}.pth'.format(epoch+1, datetime.now().strftime("%Y%m%d_%H-%M-%S"))))
discriminator.save(add_state={'optimizer_state_dict' : discriminator_optimizer.state_dict()},
file_name=os.path.join(args.save_dir,'discriminator_param_fin_{}.pth'.format(epoch+1, datetime.now().strftime("%Y%m%d_%H-%M-%S"))))
print("data is saved at {}".format(args.save_dir))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# settings
parser.add_argument('--dataset', type=str, default='dataset/dtd/images', help='directory of dataset')
parser.add_argument('--image_list', type=str, default='train_names.txt', help='image list')
# detail settings
parser.add_argument('--zl_dim', type=int, default=40, help='size of local part noise dimension') # set default same as author's implementation
parser.add_argument('--zg_dim', type=int, default=20, help='size of global part noise dimension') # set default same as author's implementation
parser.add_argument('--zp_dim', type=int, default=3, help='size of periodic part noise dimension') # set default same as author's implementation
parser.add_argument('--mlp_hidden_dim', type=int, default=60, help='size of periodic part noise dimension')
parser.add_argument('--spatial_size', type=int, default=5, help='size of spatial dimension')
# for pytorch there is no pad="same", if you need use 5 or other sizes, you might need add torch.nn.functional.pad in the model.
parser.add_argument('--kernel_size', type=int, default=4, help='size of kernels')
parser.add_argument('--layer_num', type=int, default=5, help='number of layers')
parser.add_argument('--base_conv_channel', type=int, default=64, help='base channel number of convolution layer')
parser.add_argument('--tile', type=int, default=None, help='')
parser.add_argument('--crop_size', type=int, default=64, help='size for image after processing') # setting same as pixel objectness
# this time image size is depend on spatial dimension
#parser.add_argument('--resize_size', type=int, default=80, help='size for image after processing')
parser.add_argument('--save_dir', type=str, default="./log/", help='dir of saving log and model parameters and so on')
parser.add_argument('--save_sample_every', type=int, default=100, help='count of saving model')
parser.add_argument('--save_model_every', type=int, default=500, help='count of saving model')
parser.add_argument('--epochs', type=int, default=10000, help="train epoch num.")
parser.add_argument('--batch_size', type=int, default=25, help="mini batch size")
parser.add_argument('--num_workers', type=int, default=8, help="worker # of data loader")
parser.add_argument('--learning_rate_g', type=float, default=2e-4, help="initial value of learning rate")
parser.add_argument('--learning_rate_d', type=float, default=5e-5, help="initial value of learning rate")
parser.add_argument('--adam_beta', type=float, default=0.5, help="initial value of learning rate")
parser.add_argument('--decay_value', type=float, default=0.1, help="decay learning rate with count of args:decay_every in this factor.")
parser.add_argument('--decay_every', type=int, default=2000, help="count of decaying learning rate")
parser.add_argument('--gpu_device_num', type=int, default=0, help="device number of gpu")
# option
parser.add_argument('-nogpu', action="store_true", default=False, help="don't use gpu")
parser.add_argument('-sgd', action="store_true", default=False, help="use sgd optimizer")
parser.add_argument('-show_parameters', action="store_true", default=False, help='show model parameters')
args = parser.parse_args()
train(args)