-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
72 lines (68 loc) · 3.54 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch.nn as nn
import torch
class AlexNet(nn.Module):
def __init__(self, num_classes=1000, init_weights=False):
super(AlexNet, self).__init__()
# 用nn.Sequential()将网络打包成一个模块,精简代码
self.features = nn.Sequential(
# # 卷积层提取图像特征
# nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[48, 55, 55]
# nn.ReLU(inplace=True), # 直接修改覆盖原值,节省运算内存
# nn.MaxPool2d(kernel_size=3, stride=2), # output[48, 27, 27]
# nn.Conv2d(48, 128, kernel_size=5, padding=2), # output[128, 27, 27]
# nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13]
# nn.Conv2d(128, 192, kernel_size=3, padding=1), # output[192, 13, 13]
# nn.ReLU(inplace=True),
# nn.Conv2d(192, 192, kernel_size=3, padding=1), # output[192, 13, 13]
# nn.ReLU(inplace=True),
# nn.Conv2d(192, 128, kernel_size=3, padding=1), # output[128, 13, 13]
# nn.ReLU(inplace=True),
# nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6]
nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),
nn.BatchNorm2d(48), # 添加Batch Normalization
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(48, 128, kernel_size=5, padding=2),
nn.BatchNorm2d(128), # 添加Batch Normalization
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(128, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192), # 添加Batch Normalization
nn.ReLU(inplace=True),
nn.Conv2d(192, 192, kernel_size=3, padding=1),
nn.BatchNorm2d(192), # 添加Batch Normalization
nn.ReLU(inplace=True),
nn.Conv2d(192, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128), # 添加Batch Normalization
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential( # 全连接层对图像分类
nn.Dropout(p=0.5), # Dropout 随机失活神经元,默认比例为0.5
nn.Linear(128 * 6 * 6, 2048),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(2048, 2048),
nn.ReLU(inplace=True),
nn.Linear(2048, num_classes),
)
if init_weights:
self._initialize_weights()
# 前向传播过程
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, start_dim=1) # 展平后再传入全连接层
x = self.classifier(x)
return x
# 网络权重初始化,实际上 pytorch 在构建网络时会自动初始化权重
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d): # 若是卷积层
nn.init.kaiming_normal_(m.weight, mode='fan_out', # 用(何)kaiming_normal_法初始化权重
nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0) # 初始化偏重为0
elif isinstance(m, nn.Linear): # 若是全连接层
nn.init.normal_(m.weight, 0, 0.01) # 正态分布初始化
nn.init.constant_(m.bias, 0) # 初始化偏重为0