-
Notifications
You must be signed in to change notification settings - Fork 1
/
reuters.py
50 lines (40 loc) · 1.52 KB
/
reuters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from keras.datasets import reuters
from keras import models,layers
from keras.utils import to_categorical
import numpy as np
(train_data,train_labels),(test_data,test_labels)=reuters.load_data(num_words = 10000)
# print(train_data)
# word_index = reuters.get_word_index()
# reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in test_data[3]])
# print(decoded_newswire)
def vectorize_sequence(sequences, dimension = 10000):
results = np.zeros((len(sequences),dimension))
for i,sequence in enumerate(sequences):
results[i,sequence]=1
return results
x_train = vectorize_sequence(train_data)
x_test = vectorize_sequence(test_data)
one_hot_train_labels=to_categorical(train_labels)
one_hot_test_labels=to_categorical(test_labels)
model=models.Sequential()
model.add(layers.Dense(512, activation ='relu',input_shape=(10000,)))
model.add(layers.Dense(512, activation = 'relu'))
model.add(layers.Dense(46, activation ='softmax'))
model.compile(optimizer = 'rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
model.fit(partial_x_train,
partial_y_train,
epochs=9,
batch_size=512,
validation_data=(x_val, y_val))
prediction = model.predict(x_test)
# for i in prediction:
# if(i > 0.5):
# print("positive")
# else:
# print("negative")
print(prediction)