Skip to content

Latest commit

 

History

History
30 lines (27 loc) · 1.43 KB

File metadata and controls

30 lines (27 loc) · 1.43 KB

Todo List

  • Distribution

    • scrap images recursively from a given path
    • generate stats about total images under each sub folder
    • calculate total augmenations to make in order to balance data
    • plot a BAR + PIE chart
    • encapsulate everything under one function ft_distribution(target_path, totalVariants, plot_chart=False)
    • make the function accesible via terminal run e.g: python3 000-Distribution.py ./dataset/Apple
    • split data between validation/train datasets
      • specify flag for it
  • Augmenation

    • make a an ImageAugmentor class to generate all possible 7 augmentations
    • encapsulate all in single function
    • save the augmented images into same folder as original
    • use ft_distribution to augment all images inside given path
    • save augmented images in augmented_directory by default or from user by args
    • plot augmented images if a single image is given as argument
  • Transformation

    • make the transformation functions:
      • guassian_blur
      • mask
      • roi (range of interests) objects
      • analysis object
      • pseudo-landmarks
      • colors historgram
    • if given path is image transform it and show output in place
    • if given path is directory then transform contained images recursively with their class name to destination project