-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathhash.cpp
283 lines (242 loc) · 7.75 KB
/
hash.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#include "rar.hpp"
void HashValue::Init(HASH_TYPE Type)
{
HashValue::Type=Type;
// Zero length data CRC32 is 0. It is important to set it when creating
// headers with no following data like directories or symlinks.
if (Type==HASH_RAR14 || Type==HASH_CRC32)
CRC32=0;
if (Type==HASH_BLAKE2)
{
// dd0e891776933f43c7d032b08a917e25741f8aa9a12c12e1cac8801500f2ca4f
// is BLAKE2sp hash of empty data. We init the structure to this value,
// so if we create a file or service header with no following data like
// "file copy" or "symlink", we set the checksum to proper value avoiding
// additional header type or size checks when extracting.
static byte EmptyHash[32]={
0xdd, 0x0e, 0x89, 0x17, 0x76, 0x93, 0x3f, 0x43,
0xc7, 0xd0, 0x32, 0xb0, 0x8a, 0x91, 0x7e, 0x25,
0x74, 0x1f, 0x8a, 0xa9, 0xa1, 0x2c, 0x12, 0xe1,
0xca, 0xc8, 0x80, 0x15, 0x00, 0xf2, 0xca, 0x4f
};
memcpy(Digest,EmptyHash,sizeof(Digest));
}
}
bool HashValue::operator == (const HashValue &cmp) const
{
if (Type==HASH_NONE || cmp.Type==HASH_NONE)
return true;
if (Type==HASH_RAR14 && cmp.Type==HASH_RAR14 ||
Type==HASH_CRC32 && cmp.Type==HASH_CRC32)
return CRC32==cmp.CRC32;
if (Type==HASH_BLAKE2 && cmp.Type==HASH_BLAKE2)
return memcmp(Digest,cmp.Digest,sizeof(Digest))==0;
return false;
}
DataHash::DataHash()
{
blake2ctx=NULL;
HashType=HASH_NONE;
#ifdef RAR_SMP
ThPool=NULL;
MaxThreads=0;
#endif
}
DataHash::~DataHash()
{
#ifdef RAR_SMP
delete ThPool;
#endif
cleandata(&CurCRC32, sizeof(CurCRC32));
if (blake2ctx!=NULL)
{
cleandata(blake2ctx, sizeof(blake2sp_state));
delete blake2ctx;
}
}
void DataHash::Init(HASH_TYPE Type,uint MaxThreads)
{
if (blake2ctx==NULL)
blake2ctx=new blake2sp_state;
HashType=Type;
if (Type==HASH_RAR14)
CurCRC32=0;
if (Type==HASH_CRC32)
CurCRC32=0xffffffff; // Initial CRC32 value.
if (Type==HASH_BLAKE2)
blake2sp_init(blake2ctx);
#ifdef RAR_SMP
DataHash::MaxThreads=Min(MaxThreads,HASH_POOL_THREADS);
#endif
}
void DataHash::Update(const void *Data,size_t DataSize)
{
#ifndef SFX_MODULE
if (HashType==HASH_RAR14)
CurCRC32=Checksum14((ushort)CurCRC32,Data,DataSize);
#endif
if (HashType==HASH_CRC32)
{
#ifdef RAR_SMP
UpdateCRC32MT(Data,DataSize);
#else
CurCRC32=CRC32(CurCRC32,Data,DataSize);
#endif
}
if (HashType==HASH_BLAKE2)
{
#ifdef RAR_SMP
if (MaxThreads>1 && ThPool==nullptr)
ThPool=new ThreadPool(HASH_POOL_THREADS);
blake2ctx->ThPool=ThPool;
blake2ctx->MaxThreads=MaxThreads;
#endif
blake2sp_update( blake2ctx, (byte *)Data, DataSize);
}
}
#ifdef RAR_SMP
THREAD_PROC(BuildCRC32Thread)
{
DataHash::CRC32ThreadData *td=(DataHash::CRC32ThreadData *)Data;
// Use 0 initial value to simplify combining the result with existing CRC32.
// It doesn't affect the first initial 0xffffffff in the data beginning.
// If we used 0xffffffff here, we would need to shift 0xffffffff left to
// block width and XOR it with block CRC32 to reset its initial value to 0.
td->DataCRC=CRC32(0,td->Data,td->DataSize);
}
// CRC is linear and distributive over addition, so CRC(a+b)=CRC(a)+CRC(b).
// Since addition in finite field is XOR, we have CRC(a^b)=CRC(a)^CRC(b).
// So CRC(aaabbb) = CRC(aaa000) ^ CRC(000bbb) = CRC(aaa000) ^ CRC(bbb),
// because CRC ignores leading zeroes. Thus to split CRC calculations
// to "aaa" and "bbb" blocks and then to threads we need to be able to
// find CRC(aaa000) knowing "aaa" quickly. We use Galois finite field to
// calculate the power of 2 to get "1000" and multiply it by "aaa".
void DataHash::UpdateCRC32MT(const void *Data,size_t DataSize)
{
const size_t MinBlock=0x4000;
if (DataSize<2*MinBlock || MaxThreads<2)
{
CurCRC32=CRC32(CurCRC32,Data,DataSize);
return;
}
if (ThPool==nullptr)
ThPool=new ThreadPool(HASH_POOL_THREADS);
size_t Threads=MaxThreads;
size_t BlockSize=DataSize/Threads;
if (BlockSize<MinBlock)
{
BlockSize=MinBlock;
Threads=DataSize/BlockSize;
}
CRC32ThreadData td[MaxPoolThreads];
//#undef USE_THREADS
for (size_t I=0;I<Threads;I++)
{
td[I].Data=(byte*)Data+I*BlockSize;
td[I].DataSize=(I+1==Threads) ? DataSize-I*BlockSize : BlockSize;
#ifdef USE_THREADS
ThPool->AddTask(BuildCRC32Thread,(void*)&td[I]);
#else
BuildCRC32Thread((void*)&td[I]);
#endif
}
#ifdef USE_THREADS
ThPool->WaitDone();
#endif // USE_THREADS
uint StdShift=gfExpCRC(uint(8*td[0].DataSize));
for (size_t I=0;I<Threads;I++)
{
// Prepare the multiplier to shift CRC to proper position.
uint ShiftMult;
if (td[I].DataSize==td[0].DataSize)
ShiftMult=StdShift; // Reuse the shift value for typical block size.
else
ShiftMult=gfExpCRC(uint(8*td[I].DataSize)); // 2 power "shift bits".
// To combine the cumulative total and current block CRC32, we multiply
// the total data CRC32 to shift value to place it to proper position.
// Invoke BitReverse32(), because 0xEDB88320 is the reversed polynomial.
// Alternatively we could adjust the multiplication function for reversed
// polynomials, but it would make it less readable without real speed gain.
// If CRC32 threads used 0xffffffff initial value, we would need
// to XOR the total data CRC32 with 0xffffffff before multiplication,
// so 0xffffffff is also shifted left to current block width and replaces
// the initial 0xffffffff CRC32 value with 0 in the current block CRC32
// after XOR'ing it with total data CRC32. Since now CRC32 threads use 0
// initial value, this is not necessary.
CurCRC32=BitReverse32(gfMulCRC(BitReverse32(CurCRC32), ShiftMult));
// Combine the total data and current block CRC32.
CurCRC32^=td[I].DataCRC;
}
}
#endif
uint DataHash::BitReverse32(uint N)
{
uint Reversed=0;
for (uint I=0;I<32;I++,N>>=1)
Reversed|=(N & 1)<<(31-I);
return Reversed;
}
// Galois field multiplication modulo POLY.
uint DataHash::gfMulCRC(uint A, uint B)
{
// For reversed 0xEDB88320 polynomial we bit reverse CRC32 before passing
// to this function, so we must use the normal polynomial here.
// We set the highest polynomial bit 33 for proper multiplication
// in case uint is larger than 32-bit.
const uint POLY=uint(0x104c11db7);
uint R = 0 ; // Multiplication result.
while (A != 0 && B != 0) // If any of multipliers becomes 0, quit early.
{
// For non-zero lowest B bit, add A to result.
R ^= (B & 1)!=0 ? A : 0;
// Make A twice larger before the next iteration.
// Subtract POLY to keep it modulo POLY if high bit is set.
A = (A << 1) ^ ((A & 0x80000000)!=0 ? POLY : 0);
B >>= 1; // Move next B bit to lowest position.
}
return R;
}
// Calculate 2 power N with square-and-multiply algorithm.
uint DataHash::gfExpCRC(uint N)
{
uint S = 2; // Starts from base value and contains the current square.
uint R = 1; // Exponentiation result.
while (N > 1)
{
if ((N & 1)!=0) // If N is odd.
R = gfMulCRC(R, S);
S = gfMulCRC(S, S); // Next square.
N >>= 1;
}
// We could change the loop condition to N > 0 and return R at expense
// of one additional gfMulCRC(S, S).
return gfMulCRC(R, S);
}
void DataHash::Result(HashValue *Result)
{
Result->Type=HashType;
if (HashType==HASH_RAR14)
Result->CRC32=CurCRC32;
if (HashType==HASH_CRC32)
Result->CRC32=CurCRC32^0xffffffff;
if (HashType==HASH_BLAKE2)
{
// Preserve the original context, so we can continue hashing if necessary.
blake2sp_state res=*blake2ctx;
blake2sp_final(&res,Result->Digest);
}
}
uint DataHash::GetCRC32()
{
return HashType==HASH_CRC32 ? CurCRC32^0xffffffff : 0;
}
bool DataHash::Cmp(HashValue *CmpValue,byte *Key)
{
HashValue Final;
Result(&Final);
#ifndef RAR_NOCRYPT
if (Key!=nullptr)
ConvertHashToMAC(&Final,Key);
#endif
return Final==*CmpValue;
}