-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrendering.py
31 lines (21 loc) · 1.36 KB
/
rendering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
def compute_accumulated_transmittance(betas):
accumulated_transmittance = torch.cumprod(betas, 1)
return torch.cat((torch.ones(accumulated_transmittance.shape[0], 1, device=accumulated_transmittance.device),
accumulated_transmittance[:, :-1]), dim=1)
def rendering(model, rays_o, rays_d, tn, tf, nb_bins=100, device='cpu', white_bckgr=True):
t = torch.linspace(tn, tf, nb_bins).to(device) # [nb_bins]
delta = torch.cat((t[1:] - t[:-1], torch.tensor([1e10], device=device)))
x = rays_o.unsqueeze(1) + t.unsqueeze(0).unsqueeze(-1) * rays_d.unsqueeze(1) # [nb_rays, nb_bins, 3]
colors, density = model.intersect(x.reshape(-1, 3), rays_d.expand(x.shape[1], x.shape[0], 3).transpose(0, 1).reshape(-1, 3))
colors = colors.reshape((x.shape[0], nb_bins, 3)) # [nb_rays, nb_bins, 3]
density = density.reshape((x.shape[0], nb_bins))
alpha = 1 - torch.exp(- density * delta.unsqueeze(0)) # [nb_rays, nb_bins, 1]
weights = compute_accumulated_transmittance(1 - alpha) * alpha # [nb_rays, nb_bins]
if white_bckgr:
c = (weights.unsqueeze(-1) * colors).sum(1) # [nb_rays, 3]
weight_sum = weights.sum(-1) # [nb_rays]
return c + 1 - weight_sum.unsqueeze(-1)
else:
c = (weights.unsqueeze(-1) * colors).sum(1) # [nb_rays, 3]
return c