-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOptimize.py
170 lines (125 loc) · 5.15 KB
/
Optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from scipy import integrate
from scipy import special
from scipy import interpolate
from scipy.integrate import quad
from scipy.special import erf
from scipy.interpolate import interp1d as interp1d
from scipy import optimize
# -------------------------------------------------------------------------
# BHE Data
# -------------------------------------------------------------------------
H = 100 # Length [m]
rb = 0.076 # Borehole radius [m]
lmS = 2.3 # thermal conductivty soil
cS = 2300000. # pc soil
Rb = 0.088 # borehole resistance
Tungest = 13. # undisturbed ground temperature
densF = 1045. # density fluid
capF = 3800000. # pc fluid
# -------------------------------------------------------------------------
# Measured Data
# -------------------------------------------------------------------------
with open('.....\\Data_Probe_3dt_30.0.txt', 'r') as file:
file.readline() # skip the first line
rows = [line.split('\t')[:] for line in file]
cols = [list(col) for col in zip(*rows)]
T_in = np.array([float(x) for x in cols[0]]) # [°C]
T_out = np.array([float(x) for x in cols[1]]) # [°C]
m_flow = np.array([float(x) for x in cols[2]]) # [kg/s]
groundload = (T_out-T_in)*(m_flow/densF)*capF/H # [W/m]
groundload = np.nan_to_num(groundload)
# Calc Load increments
idxPlus = np.roll(np.linspace(0,groundload.size-1,groundload.size,dtype = 'int'),1)
delta_groundload = groundload - np.take(groundload,idxPlus)
delta_groundload[0] = groundload[0]
# Mean Fluid Temperature
T_fluid_measured = (T_in + T_out)/2
# Timestep of input data
dt_data = 30 #s
Time = np.linspace(dt_data,dt_data*groundload.size,groundload.size)
plt.plot(T_in)
plt.show()
# -------------------------------------------------------------------------
# Functions
# -------------------------------------------------------------------------
def ierf(X):
return X*special.erf(X)-(1/np.sqrt(np.pi))*(1-np.exp(-X**2))
def Ils(h,d):
return 2*ierf(h) + 2*ierf(h+2*d) - ierf(2*h+2*d) - ierf(2*d)
def T_FLSjc_G(x,y,ro,z,H,lm,Cm,t):
# Finite Line Sourve: Javed and Claesson 2011
Dt = lm/Cm # thermal diffusivity [m2/s]
r = np.sqrt(x**2+y**2) # radial distance [m]
T = (1.0/4.0/np.pi/lm)*(integrate.quad(lambda s,r,H,Dt,t: np.exp(-r**2 * s**2)* Ils(H*s,1*s)/(H*s**2),1/np.sqrt(4*Dt*t),np.inf,args = (r,H,Dt,t))[0])
return T
def T_ILS_G(x,y,ro,z,H,lm,Cm,t):
# (ILS) Infinite Line Source : Carslaw & Jaeger 1959
Dt = lm/Cm # thermal diffusivity [m2/s]
r = np.sqrt(x**2+y**2) # radial distance [m]
T = (1.0/4.0/np.pi/lm)*special.expn(1,r**2.0/4.0/Dt/t)
return T
def T_ICS_G(x,y,ro,z,H,lm,Cm,t):
# (ICS) Infinite Cylindrical Source : Man et al. (2010)
Dt = lm/Cm # thermal diffusivity [m2/s]
r = np.sqrt(x**2+y**2) # radial distance [m]
def Func(f,r,ro,Dt,t):
return (1/np.pi)*special.expn(1,((r**2+ro**2-2*r*ro*np.cos(f))/4.0/Dt/t))
T = (1.0/4.0/np.pi/lm)*(integrate.quad(Func,0,np.pi,args=(r,ro,Dt,t))[0])
return T
def T_FullScale(x,y,ro,z,H,lm,Cm,t):
# Full Scale G-Function (Mi et al 2014)
T = T_ICS_G(x,y,ro,z,H,lm,Cm,t) + T_FLSjc_G(x,y,ro,z,H,lm,Cm,t) - T_ILS_G(x,y,ro,z,H,lm,Cm,t)
return T
# Laplace Transformation
def laplace(a,sig,t):
return np.fft.fft(a*np.exp(-sig*t))
def invLaplace(a,sig,t):
return np.exp(sig*t)*np.fft.ifft(a)
def optimizer(optPara):
tlog = np.geomspace(1, dt_data*groundload.size+1, 200)
T_flSjc_Glog = np.zeros(tlog.size)
for i in range(0,tlog.size):
T_flSjc_Glog[i] = eval('T_FullScale(rb,0,rb,H/2,H,optPara[2],cS,tlog[i])')
lin_g = interpolate.interp1d(tlog,T_flSjc_Glog)
T_borehole = np.ones(Time.size)*optPara[1]
Lap_Gfunc = laplace(lin_g(Time),sigma,Time)
# Calc Tborehole
T_borehole = T_borehole -1*np.real(invLaplace(Lap_deltaG*Lap_Gfunc,sigma,Time))
T_Fluid_calc = T_borehole - groundload*optPara[0]
# ignore values where flow is ~ 0
T_Fluid_calc[m_flow < 0.3] = float('nan')
T_fluid_measured[m_flow < 0.3] = float('nan')
error = (np.nanmean(np.abs(T_Fluid_calc - T_fluid_measured)/T_fluid_measured*100))
print('Tungest: ',optPara[1])
print('Rb: ',optPara[0])
print('lmS: ',optPara[2])
print('error: ',error)
print('-----------------')
return error
# -------------------------------------------------------------------------
# Optimize
# -------------------------------------------------------------------------
# some parameteres
Nt = Time.size
tmax = np.max(Time)
sigma = 2*np.log(Nt)/tmax
Lap_deltaG = laplace(delta_groundload ,sigma,Time)
# Boundaries
Rb = (0.07,0.1)
lmS = (2, 4)
Tungest = (10,15)
bounds = [Rb,Tungest,lmS]
initialGuess = [0.09,10,3]
# Brute
resbrute = optimize.brute(optimizer, bounds, full_output=False,finish=optimize.fmin)
print(resbrute)
'''
# basinhopping
minimizer_kwargs = {"method":"L-BFGS-B", "jac":False, "bounds": bounds}
results = dict()
results= optimize.basinhopping(optimizer, initialGuess, minimizer_kwargs=minimizer_kwargs, niter = 10, niter_success = 2)
print(results)
'''