-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_baymax.py
54 lines (45 loc) · 1.96 KB
/
train_baymax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
'''
DeepSoRo train on baymx dataset
author : Ruoyu Wang
created : 06/03/20 01:25 PM
'''
import os
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from pytorch3d.loss import chamfer_distance
from dataset import BaymaxDataset
from model import *
import argparse
import glog as logger
parser = argparse.ArgumentParser(description='train on baymax dataset')
parser.add_argument('-d', '--datapath', type=str, required=True, help='path to data')
parser.add_argument('-o', '--outpath', type=str, required=True, help='path to save model params')
parser.add_argument('-b', '--batch-size', type=int, default=16, help='batch size')
parser.add_argument('-l', '--learning-rate', type=float, default=1e-4, help='learning rate')
parser.add_argument('-e', '--epochs', type=int, default=500, help='number of epochs')
args = parser.parse_args()
if not os.path.exists(args.outpath):
os.mkdir(args.outpath)
os.mkdir(os.path.join(args.outpath, 'params'))
def train(dataset, model, batch_size, lr, epochs):
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
opt = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-6)
model.cuda()
model.train()
for ep in range(epochs):
for batch_idx, batch in enumerate(dataloader):
opt.zero_grad()
img, pts = batch['img'].cuda(), batch['pts'].cuda()
pts_pred = model(img)
loss, _ = chamfer_distance(pts_pred, pts)
loss.backward()
opt.step()
if batch_idx % 10 == 9:
logger.info('[%d, %5d] loss: %.6f' %
(ep + 1, batch_idx + 1, loss.item()))
torch.save(model.state_dict(), os.path.join(args.outpath, 'params','ep_%d.pth' % (ep + 1)))
if __name__ == '__main__':
dataset = BaymaxDataset(args.datapath)
model = deepsoronet_vanilla()
train(dataset, model, args.batch_size, args.learning_rate, args.epochs)